Merge pull request #13 from FYS3150-G2-2023/1-solve-problem-1
1 solve problem 1
This commit is contained in:
commit
0430b0fcf0
6
.gitignore
vendored
6
.gitignore
vendored
@ -30,3 +30,9 @@
|
|||||||
*.exe
|
*.exe
|
||||||
*.out
|
*.out
|
||||||
*.app
|
*.app
|
||||||
|
|
||||||
|
# Latex
|
||||||
|
*.aux
|
||||||
|
*.log
|
||||||
|
*.out
|
||||||
|
*.bib
|
||||||
|
|||||||
BIN
latex/assignment_1.pdf
Normal file
BIN
latex/assignment_1.pdf
Normal file
Binary file not shown.
@ -74,8 +74,8 @@
|
|||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
|
|
||||||
\title{Title of the document} % self-explanatory
|
\title{Project 1} % self-explanatory
|
||||||
\author{Cory Balaton \& Janita} % self-explanatory
|
\author{Cory Balaton \& Janita Willumsen} % self-explanatory
|
||||||
\date{\today} % self-explanatory
|
\date{\today} % self-explanatory
|
||||||
\noaffiliation % ignore this, but keep it.
|
\noaffiliation % ignore this, but keep it.
|
||||||
|
|
||||||
@ -87,6 +87,38 @@
|
|||||||
\section*{Problem 1}
|
\section*{Problem 1}
|
||||||
|
|
||||||
% Do the double integral
|
% Do the double integral
|
||||||
|
\begin{align*}
|
||||||
|
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2\\
|
||||||
|
&= \int \int -100 e^{-10x} dx^2 \\
|
||||||
|
&= \int \frac{-100 e^{-10x}}{-10} + c_1 dx \\
|
||||||
|
&= \int 10 e^{-10x} + c_1 dx \\
|
||||||
|
&= \frac{10 e^{-10x}}{-10} + c_1 x + c_2 \\
|
||||||
|
&= -e^{-10x} + c_1 x + c_2
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Using the boundary conditions, we can find $c_1$ and $c_2$ as shown below:
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
u(0) &= 0 \\
|
||||||
|
-e^{-10 \cdot 0} + c_1 \cdot 0 + c_2 &= 0 \\
|
||||||
|
-1 + c_2 &= 0 \\
|
||||||
|
c_2 &= 1
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
u(1) &= 0 \\
|
||||||
|
-e^{-10 \cdot 1} + c_1 \cdot 1 + c_2 &= 0 \\
|
||||||
|
-e^{-10} + c_1 + c_2 &= 0 \\
|
||||||
|
c_1 &= e^{-10} - c_2\\
|
||||||
|
c_1 &= e^{-10} - 1\\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
Using the values that we found for $c_1$ and $c_2$, we get
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
u(x) &= -e^{-10x} + (e^{-10} - 1) x + 1 \\
|
||||||
|
&= 1 - (1 - e^{-10}) - e^{-10x}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
\section*{Problem 2}
|
\section*{Problem 2}
|
||||||
|
|
||||||
@ -106,9 +138,9 @@
|
|||||||
|
|
||||||
\subsection*{b)}
|
\subsection*{b)}
|
||||||
|
|
||||||
\section{Problem 6}
|
\section*{Problem 6}
|
||||||
|
|
||||||
\subsection{a)}
|
\subsection*{a)}
|
||||||
|
|
||||||
% Use Gaussian elimination, and then use backwards substitution to solve the equation
|
% Use Gaussian elimination, and then use backwards substitution to solve the equation
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user