More stuff

This commit is contained in:
Janita Willumsen 2023-09-08 13:22:31 +02:00
commit 1ab0a1a490
10 changed files with 76 additions and 40 deletions

6
.gitignore vendored
View File

@ -38,3 +38,9 @@
*.bib *.bib
*.synctex.gz *.synctex.gz
*.bbl *.bbl
# C++ specifics
src/*
!src/Makefile
!src/*.cpp
!src/*.py

Binary file not shown.

View File

@ -74,6 +74,9 @@
%% %%
%% Don't ask me why, I don't know. %% Don't ask me why, I don't know.
% custom stuff
\graphicspath{{./images/}}
\begin{document} \begin{document}
\title{Project 1} % self-explanatory \title{Project 1} % self-explanatory

Binary file not shown.

View File

@ -1,5 +1,14 @@
\section*{Problem 1} \section*{Problem 1}
First, we rearrange the equation.
\begin{align*}
- \frac{d^2u}{dx^2} &= 100 e^{-10x} \\
\frac{d^2u}{dx^2} &= -100 e^{-10x} \\
\end{align*}
Now we find $u(x)$.
% Do the double integral % Do the double integral
\begin{align*} \begin{align*}
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2 \\ u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2 \\
@ -10,7 +19,7 @@
&= -e^{-10x} + c_1 x + c_2 &= -e^{-10x} + c_1 x + c_2
\end{align*} \end{align*}
Using the boundary conditions, we can find $c_1$ and $c_2$ as shown below: Using the boundary conditions, we can find $c_1$ and $c_2$
\begin{align*} \begin{align*}
u(0) &= 0 \\ u(0) &= 0 \\

View File

@ -1,3 +1,11 @@
\section*{Problem 2} \section*{Problem 2}
% Write which .cpp/.hpp/.py (using a link?) files are relevant for this and show the plot generated. The code for generating the points and plotting them can be found under.
Point generator code: https://github.uio.no/FYS3150-G2-203/Project-1/blob/main/src/analyticPlot.cpp
Plotting code: https://github.uio.no/FYS3150-G2-2023/Project-1/blob/main/src/analyticPlot.py
Here is the plot of the analytical solution for $u(x)$.
\includegraphics[scale=.5]{analytical_solution.pdf}

View File

@ -2,7 +2,7 @@
\section*{Problem 3} \section*{Problem 3}
To derive the discretized version of the Poisson equation, we first need To derive the discretized version of the Poisson equation, we first need
the taylor expansion for $u(x)$ around $x + h$ and $x - h$. the Taylor expansion for $u(x)$ around $x$ for $x + h$ and $x - h$.
\begin{align*} \begin{align*}
u(x+h) &= u(x) + u'(x) h + \frac{1}{2} u''(x) h^2 + \frac{1}{6} u'''(x) h^3 + \mathcal{O}(h^4) u(x+h) &= u(x) + u'(x) h + \frac{1}{2} u''(x) h^2 + \frac{1}{6} u'''(x) h^3 + \mathcal{O}(h^4)
@ -24,8 +24,8 @@ If we add the equations above, we get this new equation:
We can then replace $\frac{d^2u}{dx^2}$ with the RHS (right-hand side) of the equation: We can then replace $\frac{d^2u}{dx^2}$ with the RHS (right-hand side) of the equation:
\begin{align*} \begin{align*}
- \frac{d^2u}{dx^2} &= 100 e^{-10x} \\ - \frac{d^2u}{dx^2} &= f(x) \\
\frac{ - u_{i+1} + 2 u_i - u_{i-1}}{h^2} + \mathcal{O}(h^2) &= 100 e^{-10x} \\ \frac{ - u_{i+1} + 2 u_i - u_{i-1}}{h^2} + \mathcal{O}(h^2) &= f_i \\
\end{align*} \end{align*}
And lastly, we leave out $\mathcal{O}(h^2)$ and change $u_i$ to $v_i$ to And lastly, we leave out $\mathcal{O}(h^2)$ and change $u_i$ to $v_i$ to
@ -33,5 +33,5 @@ differentiate between the exact solution and the approximate solution,
and get the discretized version of the equation: and get the discretized version of the equation:
\begin{align*} \begin{align*}
align* \frac{ - u_{i+1} + 2 u_i - u_{i-1}}{h^2} &= 100 e^{-10x} \\ \frac{ - v_{i+1} + 2 v_i - v_{i-1}}{h^2} &= 100 e^{-10x_i} \\
\end{align*} \end{align*}

View File

@ -1,10 +1,15 @@
CC=g++ CC=g++
all: simpleFile .PHONY: clean
all: simpleFile analyticPlot
simpleFile: simpleFile.o simpleFile: simpleFile.o
$(CC) -o $@ $^ $(CC) -o $@ $^
analyticPlot: analyticPlot.o
$(CC) -o $@ $^
%.o: %.cpp %.o: %.cpp
$(CC) -c $< -o $@ $(CC) -c $< -o $@

View File

@ -6,17 +6,36 @@
#include <fstream> #include <fstream>
#include <iomanip> #include <iomanip>
#define RANGE 1000
#define FILENAME "analytical_solution.txt"
double u(double x); double u(double x);
void generate_range(std::vector<double> &vec, double start, double stop, int n); void generate_range(std::vector<double> &vec, double start, double stop, int n);
void write_analytical_solution(std::string filename, int n);
int main() { int main() {
int n = 1000; write_analytical_solution(FILENAME, RANGE);
return 0;
};
double u(double x) {
return 1 - (1 - exp(-10))*x - exp(-10*x);
};
void generate_range(std::vector<double> &vec, double start, double stop, int n) {
double step = (stop - start) / n;
for (int i = 0; i <= vec.size(); i++) {
vec[i] = i * step;
}
}
void write_analytical_solution(std::string filename, int n) {
std::vector<double> x(n), y(n); std::vector<double> x(n), y(n);
generate_range(x, 0.0, 1.0, n); generate_range(x, 0.0, 1.0, n);
// Set up output file and strem // Set up output file and strem
std::string filename = "datapoints.txt";
std::ofstream outfile; std::ofstream outfile;
outfile.open(filename); outfile.open(filename);
@ -32,21 +51,5 @@ int main() {
<< std::endl; << std::endl;
} }
outfile.close(); outfile.close();
return 0;
};
double u(double x) {
double result;
result = 1 - (1 - exp(-10))*x - exp(-10*x);
return result;
};
void generate_range(std::vector<double> &vec, double start, double stop, int n) {
double step = (stop - start) / n;
for (int i = 0; i <= vec.size(); i++) {
vec[i] = i * step;
}
} }

View File

@ -1,17 +1,19 @@
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
def main():
FILENAME = "analytical_solution.pdf"
x = [] x = []
y = []
v = [] v = []
with open('testdata.txt') as f:
for line in f:
a, b, c = line.strip().split()
x.append(float(a))
# y.append(float(b))
v.append(float(c))
fig, ax = plt.subplots() with open('analytical_solution.txt') as f:
ax.plot(x, v) for line in f:
plt.show() a, b = line.strip().split()
# plt.savefig("main.png") x.append(float(a))
v.append(float(b))
plt.plot(x, v)
plt.savefig(FILENAME)
if __name__ == "__main__":
main()