Merge pull request #20 from FYS3150-G2-2023/9-solve-problem-9
9 solve problem 9
This commit is contained in:
commit
439bcefcb4
@ -17,6 +17,7 @@ Following Thomas algorithm for gaussian elimination, we first perform a forward
|
|||||||
\State $n \leftarrow$ length of $\vec{b}$
|
\State $n \leftarrow$ length of $\vec{b}$
|
||||||
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
|
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
|
||||||
\State $\hat{b}_{1} \leftarrow b_{1}$ \Comment{Handle first element in main diagonal outside loop}
|
\State $\hat{b}_{1} \leftarrow b_{1}$ \Comment{Handle first element in main diagonal outside loop}
|
||||||
|
\State $\hat{g}_{1} \leftarrow g_{1}$
|
||||||
\For{$i = 2, 3, ..., n$}
|
\For{$i = 2, 3, ..., n$}
|
||||||
\State $d \leftarrow \frac{a_{i}}{\hat{b}_{i-1}}$ \Comment{Calculating common expression}
|
\State $d \leftarrow \frac{a_{i}}{\hat{b}_{i-1}}$ \Comment{Calculating common expression}
|
||||||
\State $\hat{b}_{i} \leftarrow b_{i} - d \cdot c_{i-1}$
|
\State $\hat{b}_{i} \leftarrow b_{i} - d \cdot c_{i-1}$
|
||||||
|
|||||||
@ -1,3 +1,55 @@
|
|||||||
\section*{Problem 9}
|
\section*{Problem 9}
|
||||||
|
|
||||||
% Show the algorithm, then calculate FLOPs, then link to relevant files
|
\subsection*{a)}
|
||||||
|
% Specialize algorithm
|
||||||
|
The special algorithm does not require the values of all $a_{i}$, $b_{i}$, $c_{i}$.
|
||||||
|
We find the values of $\hat{b}_{i}$ from simplifying the general case
|
||||||
|
\begin{align*}
|
||||||
|
\hat{b}_{i} &= b_{i} - \frac{a_{i} \cdot c_{i-1}}{\hat{b}_{i-1}} \\
|
||||||
|
\hat{b}_{i} &= 2 - \frac{1}{\hat{b}_{i-1}}
|
||||||
|
\end{align*}
|
||||||
|
Calculating the first values to see a pattern
|
||||||
|
\begin{align*}
|
||||||
|
\hat{b}_{1} &= 2 \\
|
||||||
|
\hat{b}_{2} &= 2 - \frac{1}{2} = \frac{3}{2} \\
|
||||||
|
\hat{b}_{3} &= 2 - \frac{1}{\frac{3}{2}} = \frac{4}{3} \\
|
||||||
|
\hat{b}_{4} &= 2 - \frac{1}{\frac{4}{3}} = \frac{5}{4} \\
|
||||||
|
\vdots & \\
|
||||||
|
\hat{b}_{i} &= \frac{i+1}{i} && \text{for $i = 1, 2, ..., n$}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
|
||||||
|
\begin{algorithm}[H]
|
||||||
|
\caption{Special algorithm}\label{algo:special}
|
||||||
|
\begin{algorithmic}
|
||||||
|
\Procedure{Forward sweep}{$\vec{b}$}
|
||||||
|
\State $n \leftarrow$ length of $\vec{b}$
|
||||||
|
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
|
||||||
|
\State $\hat{b}_{1} \leftarrow 2$ \Comment{Handle first element in main diagonal outside loop}
|
||||||
|
\State $\hat{g}_{1} \leftarrow g_{1}$
|
||||||
|
\For{$i = 2, 3, ..., n$}
|
||||||
|
\State $\hat{b}_{i} \leftarrow \frac{i+1}{i}$
|
||||||
|
\State $\hat{g}_{i} \leftarrow g_{i} + \frac{\hat{g}_{i-1}}{\hat{b}_{i-1}}$
|
||||||
|
\EndFor
|
||||||
|
\Return $\vec{\hat{b}}$, $\vec{\hat{g}}$
|
||||||
|
\EndProcedure
|
||||||
|
|
||||||
|
\Procedure{Backward sweep}{$\vec{\hat{b}}$, $\vec{\hat{g}}$}
|
||||||
|
\State $n \leftarrow$ length of $\vec{\hat{b}}$
|
||||||
|
\State $\vec{v} \leftarrow$ vector of length $n$.
|
||||||
|
\State $v_{n} \leftarrow \frac{\hat{g}_{n}}{\hat{b}_{n}}$
|
||||||
|
\For{$i = n-1, n-2, ..., 1$}
|
||||||
|
\State $v_{i} \leftarrow \frac{\hat{g}_{i} + v_{i+1}}{\hat{b}_{i}}$
|
||||||
|
\EndFor
|
||||||
|
\Return $\vec{v}$
|
||||||
|
\EndProcedure
|
||||||
|
\end{algorithmic}
|
||||||
|
\end{algorithm}
|
||||||
|
|
||||||
|
|
||||||
|
\subsection*{b)}
|
||||||
|
% Find FLOPs
|
||||||
|
For every iteration of i in forward sweep we have 2 divisions, and 2 additions, resulting in $4(n-1)$ FLOPs.
|
||||||
|
For backward sweep we have 1 division, and for every iteration of i we have 1 addition, and 1 division, resulting in $2(n-1)+1$ FLOPs.
|
||||||
|
Total FLOPs for the special algorithm is $6(n-1)+1$.
|
||||||
|
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user