Put each problem into their own file

This commit is contained in:
Cory Balaton 2023-09-07 14:05:27 +02:00
parent aee15203df
commit 4cf07eb274
No known key found for this signature in database
GPG Key ID: 3E5FCEBFD80F432B
12 changed files with 81 additions and 71 deletions

Binary file not shown.

View File

@ -84,84 +84,22 @@
\textit{https://github.uio.no/FYS3150-G2-2023/Project-1} \textit{https://github.uio.no/FYS3150-G2-2023/Project-1}
\section*{Problem 1} \input{problems/problem1}
% Do the double integral \input{problems/problem2}
\begin{align*}
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2\\
&= \int \int -100 e^{-10x} dx^2 \\
&= \int \frac{-100 e^{-10x}}{-10} + c_1 dx \\
&= \int 10 e^{-10x} + c_1 dx \\
&= \frac{10 e^{-10x}}{-10} + c_1 x + c_2 \\
&= -e^{-10x} + c_1 x + c_2
\end{align*}
Using the boundary conditions, we can find $c_1$ and $c_2$ as shown below: \input{problems/problem3}
\begin{align*} \input{problems/problem4}
u(0) &= 0 \\
-e^{-10 \cdot 0} + c_1 \cdot 0 + c_2 &= 0 \\
-1 + c_2 &= 0 \\
c_2 &= 1
\end{align*}
\begin{align*} \input{problems/problem5}
u(1) &= 0 \\
-e^{-10 \cdot 1} + c_1 \cdot 1 + c_2 &= 0 \\
-e^{-10} + c_1 + c_2 &= 0 \\
c_1 &= e^{-10} - c_2\\
c_1 &= e^{-10} - 1\\
\end{align*}
Using the values that we found for $c_1$ and $c_2$, we get \input{problems/problem6}
\begin{align*} \input{problems/problem7}
u(x) &= -e^{-10x} + (e^{-10} - 1) x + 1 \\
&= 1 - (1 - e^{-10}) - e^{-10x}
\end{align*}
\section*{Problem 2} \input{problems/problem8}
% Write which .cpp/.hpp/.py (using a link?) files are relevant for this and show the plot generated. \input{problems/problem9}
\section*{Problem 3}
% Show how it's derived and where we found the derivation.
\section*{Problem 4}
% Show that each iteration of the discretized version naturally creates a matrix equation.
\section*{Problem 5}
\subsection*{a)}
\subsection*{b)}
\section*{Problem 6}
\subsection*{a)}
% Use Gaussian elimination, and then use backwards substitution to solve the equation
\subsection*{b)}
% Figure it out
\section*{Problem 7}
% Link to relevant files on gh and possibly add some comments
\section*{Problem 8}
%link to relvant files and show plots
\section*{Problem 9}
% Show the algorithm, then calculate FLOPs, then link to relevant files
\section*{Problem 10}
% Time and show result, and link to relevant files
\end{document} \end{document}

View File

@ -0,0 +1,35 @@
\section*{Problem 1}
% Do the double integral
\begin{align*}
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2\\
&= \int \int -100 e^{-10x} dx^2 \\
&= \int \frac{-100 e^{-10x}}{-10} + c_1 dx \\
&= \int 10 e^{-10x} + c_1 dx \\
&= \frac{10 e^{-10x}}{-10} + c_1 x + c_2 \\
&= -e^{-10x} + c_1 x + c_2
\end{align*}
Using the boundary conditions, we can find $c_1$ and $c_2$ as shown below:
\begin{align*}
u(0) &= 0 \\
-e^{-10 \cdot 0} + c_1 \cdot 0 + c_2 &= 0 \\
-1 + c_2 &= 0 \\
c_2 &= 1
\end{align*}
\begin{align*}
u(1) &= 0 \\
-e^{-10 \cdot 1} + c_1 \cdot 1 + c_2 &= 0 \\
-e^{-10} + c_1 + c_2 &= 0 \\
c_1 &= e^{-10} - c_2\\
c_1 &= e^{-10} - 1\\
\end{align*}
Using the values that we found for $c_1$ and $c_2$, we get
\begin{align*}
u(x) &= -e^{-10x} + (e^{-10} - 1) x + 1 \\
&= 1 - (1 - e^{-10}) - e^{-10x}
\end{align*}

View File

@ -0,0 +1,3 @@
\section*{Problem 10}
% Time and show result, and link to relevant files

View File

@ -0,0 +1,3 @@
\section*{Problem 2}
% Write which .cpp/.hpp/.py (using a link?) files are relevant for this and show the plot generated.

View File

@ -0,0 +1,4 @@
\section*{Problem 3}
% Show how it's derived and where we found the derivation.

View File

@ -0,0 +1,3 @@
\section*{Problem 4}
% Show that each iteration of the discretized version naturally creates a matrix equation.

View File

@ -0,0 +1,6 @@
\section*{Problem 5}
\subsection*{a)}
\subsection*{b)}

View File

@ -0,0 +1,9 @@
\section*{Problem 6}
\subsection*{a)}
% Use Gaussian elimination, and then use backwards substitution to solve the equation
\subsection*{b)}
% Figure it out

View File

@ -0,0 +1,3 @@
\section*{Problem 7}
% Link to relevant files on gh and possibly add some comments

View File

@ -0,0 +1,3 @@
\section*{Problem 8}
%link to relvant files and show plots

View File

@ -0,0 +1,3 @@
\section*{Problem 9}
% Show the algorithm, then calculate FLOPs, then link to relevant files