diff --git a/.gitignore b/.gitignore index 1472614..195baec 100644 --- a/.gitignore +++ b/.gitignore @@ -36,6 +36,9 @@ *.log *.out *.bib +*.synctex.gz +*.bbl +# C++ specifics src/* !src/*.cpp diff --git a/latex/assignment_1.tex b/latex/assignment_1.tex index 87de2c0..45f77c5 100644 --- a/latex/assignment_1.tex +++ b/latex/assignment_1.tex @@ -1,7 +1,9 @@ \documentclass[english,notitlepage]{revtex4-1} % defines the basic parameters of the document %For preview: skriv i terminal: latexmk -pdf -pvc filnavn - +% Silence warning of revtex4-1 +\usepackage{silence} +\WarningFilter{revtex4-1}{Repair the float} % if you want a single-column, remove reprint @@ -13,7 +15,7 @@ %% I recommend downloading TeXMaker, because it includes a large library of the most common packages. \usepackage{physics,amssymb} % mathematical symbols (physics imports amsmath) -\include{amsmath} +\usepackage{amsmath} \usepackage{graphicx} % include graphics such as plots \usepackage{xcolor} % set colors \usepackage{hyperref} % automagic cross-referencing (this is GODLIKE) diff --git a/latex/problems/problem4.tex b/latex/problems/problem4.tex index 2f690f3..fea7255 100644 --- a/latex/problems/problem4.tex +++ b/latex/problems/problem4.tex @@ -1,3 +1,44 @@ \section*{Problem 4} % Show that each iteration of the discretized version naturally creates a matrix equation. + +The value of $u(x_{0})$ and $u(x_{1})$ is known, using the discretized equation we can approximate the value of $f(x_{i}) = f_{i}$. This will result in a set of equations +\begin{align*} + - v_{0} + 2 v_{1} - v_{2} &= h^{2} \cdot f_{1} \\ + - v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\ + \vdots & \\ + - v_{m-2} + 2 v_{m-1} - v_{m} &= h^{2} \cdot f_{m-1} \\ +\end{align*} + +Rearranging the first and last equation, moving terms of known boundary values to the RHS +\begin{align*} + 2 v_{1} - v_{2} &= h^{2} \cdot f_{1} + v_{0} \\ + - v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\ + \vdots & \\ + - v_{m-2} + 2 v_{m-1} &= h^{2} \cdot f_{m-1} + v_{m} \\ +\end{align*} + +We now have a number of linear eqations, corresponding to the number of unknown values, which can be represented as an augmented matrix +\begin{align*} + \left[ + \begin{matrix} + 2v_{1} & -v_{2} & 0 & \dots & 0 \\ + -v_{1} & 2v_{2} & -v_{3} & 0 & \\ + 0 & -v_{2} & 2v_{3} & -v_{4} & \\ + \vdots & & & \ddots & \vdots \\ + 0 & & & -v_{m-2} & 2v_{m-1} \\ + \end{matrix} + \left| + \, + \begin{matrix} + g_{1} \\ + g_{2} \\ + g_{2} \\ + \vdots \\ + g_{m-1} \\ + \end{matrix} + \right. + \right] + \end{align*} + where $g_{i} = h^{2} f_{i}$. An augmented matrix can be represented as $\boldsymbol{A} \vec{x} = \vec{b}$. In this case $\boldsymbol{A}$ is the coefficient matrix with a tridiagonal signature $(-1, 2, -1)$ and dimension $n \cross n$, where $n=m-2$. +