Include figures with caption for problem 2, 7, 8, and 10
This commit is contained in:
parent
e516104576
commit
b88a9027bc
Binary file not shown.
@ -1,3 +1,8 @@
|
|||||||
\section*{Problem 10}
|
\section*{Problem 10}
|
||||||
|
|
||||||
% Time and show result, and link to relevant files
|
% Time and show result, and link to relevant files
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.7\linewidth]{images/problem10.pdf}
|
||||||
|
\caption{Timing of general algorithm vs. special for step sizes $n_{steps}$}
|
||||||
|
\end{figure}
|
||||||
@ -6,6 +6,8 @@ Point generator code: https://github.uio.no/FYS3150-G2-203/Project-1/blob/main/s
|
|||||||
|
|
||||||
Plotting code: https://github.uio.no/FYS3150-G2-2023/Project-1/blob/main/src/analyticPlot.py
|
Plotting code: https://github.uio.no/FYS3150-G2-2023/Project-1/blob/main/src/analyticPlot.py
|
||||||
|
|
||||||
Here is the plot of the analytical solution for $u(x)$.
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
\includegraphics[scale=.5]{analytical_solution.pdf}
|
\includegraphics[width=0.8\linewidth]{images/analytical_solution.pdf}
|
||||||
|
\caption{Plot of the analytical solution $u(x)$.}
|
||||||
|
\end{figure}
|
||||||
|
|||||||
@ -5,5 +5,10 @@
|
|||||||
The code can be found at https://github.uio.no/FYS3150-G2-2023/Project-1/blob/coryab/final-run/src/generalAlgorithm.cpp
|
The code can be found at https://github.uio.no/FYS3150-G2-2023/Project-1/blob/coryab/final-run/src/generalAlgorithm.cpp
|
||||||
|
|
||||||
\subsection*{b)}
|
\subsection*{b)}
|
||||||
|
Increasing the number of steps results in an approximation close to the exact solution.
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\linewidth]{images/problem7.pdf}
|
||||||
|
\caption{Plot showing the numeric solution of $u_{approx}$ for $n_{steps}$ and the exact solution $u_{exact}$.}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
\includegraphics{problem7}
|
|
||||||
|
|||||||
@ -1,3 +1,27 @@
|
|||||||
\section*{Problem 8}
|
\section*{Problem 8}
|
||||||
|
|
||||||
%link to relvant files and show plots
|
%link to relvant files and show plots
|
||||||
|
\subsection*{a)}
|
||||||
|
Increasing number of steps result in a decrease of absolute error.
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\linewidth]{images/problem8_a.pdf}
|
||||||
|
\caption{Absolute error for different step sizes $n_{steps}$.}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\subsection*{b)}
|
||||||
|
Increasing number of steps also result in a decrease of absolute error.
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.8\linewidth]{images/problem8_b.pdf}
|
||||||
|
\caption{Relative error for different step sizes $n_{steps}$.}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\subsection*{c)}
|
||||||
|
Increasing number of steps result in a decrease of maximum relative error, up to a certain number of steps. At $n_{steps} \approx 10^{5}$ the maximumrelative error increase.
|
||||||
|
This can be related to loss of numerical precicion when step size is small.
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=0.7\linewidth]{images/problem8_c.pdf}
|
||||||
|
\caption{Maximum relative error for each step sizes $n_{steps}$.}
|
||||||
|
\end{figure}
|
||||||
Loading…
Reference in New Issue
Block a user