Finished exercise 4
This commit is contained in:
parent
13cbbc4e0e
commit
c42426847d
@ -1,3 +1,44 @@
|
||||
\section*{Problem 4}
|
||||
|
||||
% Show that each iteration of the discretized version naturally creates a matrix equation.
|
||||
|
||||
The value of $u(x_{0})$ and $u(x_{1})$ is known, using the discretized equation we can approximate the value of $f(x_{i}) = f_{i}$. This will result in a set of equations
|
||||
\begin{align*}
|
||||
- v_{0} + 2 v_{1} - v_{2} &= h^{2} \cdot f_{1} \\
|
||||
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
|
||||
\vdots & \\
|
||||
- v_{m-2} + 2 v_{m-1} - v_{m} &= h^{2} \cdot f_{m-1} \\
|
||||
\end{align*}
|
||||
|
||||
Rearranging the first and last equation, moving terms of known boundary values to the RHS
|
||||
\begin{align*}
|
||||
2 v_{1} - v_{2} &= h^{2} \cdot f_{1} + v_{0} \\
|
||||
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
|
||||
\vdots & \\
|
||||
- v_{m-2} + 2 v_{m-1} &= h^{2} \cdot f_{m-1} + v_{m} \\
|
||||
\end{align*}
|
||||
|
||||
We now have a number of linear eqations, corresponding to the number of unknown values, which can be represented as an augmented matrix
|
||||
\begin{align*}
|
||||
\left[
|
||||
\begin{matrix}
|
||||
2v_{1} & -v_{2} & 0 & \dots & 0 \\
|
||||
-v_{1} & 2v_{2} & -v_{3} & 0 & \\
|
||||
0 & -v_{2} & 2v_{3} & -v_{4} & \\
|
||||
\vdots & & & \ddots & \vdots \\
|
||||
0 & & & -v_{m-2} & 2v_{m-1} \\
|
||||
\end{matrix}
|
||||
\left|
|
||||
\,
|
||||
\begin{matrix}
|
||||
g_{1} \\
|
||||
g_{2} \\
|
||||
g_{2} \\
|
||||
\vdots \\
|
||||
g_{m-1} \\
|
||||
\end{matrix}
|
||||
\right.
|
||||
\right]
|
||||
\end{align*}
|
||||
where $g_{i} = h^{2} f_{i}$. An augmented matrix can be represented as $\boldsymbol{A} \vec{x} = \vec{b}$. In this case $\boldsymbol{A}$ is the coefficient matrix with a tridiagonal signature $(-1, 2, -1)$ and dimension $n \cross n$, where $n=m-2$.
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user