Finish problem 1
This commit is contained in:
parent
cadee04b9f
commit
c86c1dc73b
BIN
latex/assignment_1.pdf
Normal file
BIN
latex/assignment_1.pdf
Normal file
Binary file not shown.
@ -74,7 +74,7 @@
|
||||
|
||||
\begin{document}
|
||||
|
||||
\title{Title of the document} % self-explanatory
|
||||
\title{Project 1} % self-explanatory
|
||||
\author{Cory Balaton \& Janita} % self-explanatory
|
||||
\date{\today} % self-explanatory
|
||||
\noaffiliation % ignore this, but keep it.
|
||||
@ -87,6 +87,38 @@
|
||||
\section*{Problem 1}
|
||||
|
||||
% Do the double integral
|
||||
\begin{align*}
|
||||
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2\\
|
||||
&= \int \int -100 e^{-10x} dx^2 \\
|
||||
&= \int \frac{-100 e^{-10x}}{-10} + c_1 dx \\
|
||||
&= \int 10 e^{-10x} + c_1 dx \\
|
||||
&= \frac{10 e^{-10x}}{-10} + c_1 x + c_2 \\
|
||||
&= -e^{-10x} + c_1 x + c_2
|
||||
\end{align*}
|
||||
|
||||
Using the boundary conditions, we can find $c_1$ and $c_2$ as shown below:
|
||||
|
||||
\begin{align*}
|
||||
u(0) &= 0 \\
|
||||
-e^{-10 \cdot 0} + c_1 \cdot 0 + c_2 &= 0 \\
|
||||
-1 + c_2 &= 0 \\
|
||||
c_2 &= 1
|
||||
\end{align*}
|
||||
|
||||
\begin{align*}
|
||||
u(1) &= 0 \\
|
||||
-e^{-10 \cdot 1} + c_1 \cdot 1 + c_2 &= 0 \\
|
||||
-e^{-10} + c_1 + c_2 &= 0 \\
|
||||
c_1 &= e^{-10} - c_2\\
|
||||
c_1 &= e^{-10} - 1\\
|
||||
\end{align*}
|
||||
|
||||
Using the values that we found for $c_1$ and $c_2$, we get
|
||||
|
||||
\begin{align*}
|
||||
u(x) &= -e^{-10x} + (e^{-10} - 1) x + 1 \\
|
||||
&= 1 - (1 - e^{-10}) - e^{-10x}
|
||||
\end{align*}
|
||||
|
||||
\section*{Problem 2}
|
||||
|
||||
@ -106,9 +138,9 @@
|
||||
|
||||
\subsection*{b)}
|
||||
|
||||
\section{Problem 6}
|
||||
\section*{Problem 6}
|
||||
|
||||
\subsection{a)}
|
||||
\subsection*{a)}
|
||||
|
||||
% Use Gaussian elimination, and then use backwards substitution to solve the equation
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user