Merge pull request #17 from FYS3150-G2-2023/coryab/edit-problem-1
Coryab/edit problem 1
This commit is contained in:
commit
d886d3761e
4
.gitignore
vendored
4
.gitignore
vendored
@ -38,3 +38,7 @@
|
||||
*.bib
|
||||
*.synctex.gz
|
||||
*.bbl
|
||||
|
||||
# C++ specifics
|
||||
src/*
|
||||
!src/*.cpp
|
||||
|
||||
Binary file not shown.
@ -1,8 +1,17 @@
|
||||
\section*{Problem 1}
|
||||
|
||||
First, we rearrange the equation.
|
||||
|
||||
\begin{align*}
|
||||
- \frac{d^2u}{dx^2} &= 100 e^{-10x} \\
|
||||
\frac{d^2u}{dx^2} &= -100 e^{-10x} \\
|
||||
\end{align*}
|
||||
|
||||
Now we find $u(x)$.
|
||||
|
||||
% Do the double integral
|
||||
\begin{align*}
|
||||
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2\\
|
||||
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2 \\
|
||||
&= \int \int -100 e^{-10x} dx^2 \\
|
||||
&= \int \frac{-100 e^{-10x}}{-10} + c_1 dx \\
|
||||
&= \int 10 e^{-10x} + c_1 dx \\
|
||||
@ -10,7 +19,7 @@
|
||||
&= -e^{-10x} + c_1 x + c_2
|
||||
\end{align*}
|
||||
|
||||
Using the boundary conditions, we can find $c_1$ and $c_2$ as shown below:
|
||||
Using the boundary conditions, we can find $c_1$ and $c_2$
|
||||
|
||||
\begin{align*}
|
||||
u(0) &= 0 \\
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
\section*{Problem 3}
|
||||
|
||||
To derive the discretized version of the Poisson equation, we first need
|
||||
the taylor expansion for $u(x)$ around $x + h$ and $x - h$.
|
||||
the Taylor expansion for $u(x)$ around $x$ for $x + h$ and $x - h$.
|
||||
|
||||
\begin{align*}
|
||||
u(x+h) &= u(x) + u'(x) h + \frac{1}{2} u''(x) h^2 + \frac{1}{6} u'''(x) h^3 + \mathcal{O}(h^4)
|
||||
@ -24,8 +24,8 @@ If we add the equations above, we get this new equation:
|
||||
We can then replace $\frac{d^2u}{dx^2}$ with the RHS (right-hand side) of the equation:
|
||||
|
||||
\begin{align*}
|
||||
- \frac{d^2u}{dx^2} &= 100 e^{-10x} \\
|
||||
\frac{ - u_{i+1} + 2 u_i - u_{i-1}}{h^2} + \mathcal{O}(h^2) &= 100 e^{-10x} \\
|
||||
- \frac{d^2u}{dx^2} &= f(x) \\
|
||||
\frac{ - u_{i+1} + 2 u_i - u_{i-1}}{h^2} + \mathcal{O}(h^2) &= f_i \\
|
||||
\end{align*}
|
||||
|
||||
And lastly, we leave out $\mathcal{O}(h^2)$ and change $u_i$ to $v_i$ to
|
||||
@ -33,5 +33,5 @@ differentiate between the exact solution and the approximate solution,
|
||||
and get the discretized version of the equation:
|
||||
|
||||
\begin{align*}
|
||||
align* \frac{ - u_{i+1} + 2 u_i - u_{i-1}}{h^2} &= 100 e^{-10x} \\
|
||||
\frac{ - v_{i+1} + 2 v_i - v_{i-1}}{h^2} &= 100 e^{-10x_i} \\
|
||||
\end{align*}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user