Compare commits

...

2 Commits

Author SHA1 Message Date
327af48e73
Remove comment for problem 3 2023-09-01 16:22:54 +02:00
450e1859b1
Solve prblem 3 and add it to latex file 2023-09-01 16:21:27 +02:00
2 changed files with 34 additions and 2 deletions

Binary file not shown.

View File

@ -86,7 +86,6 @@
\section*{Problem 1}
% Do the double integral
\begin{align*}
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2\\
&= \int \int -100 e^{-10x} dx^2 \\
@ -126,7 +125,40 @@ Using the values that we found for $c_1$ and $c_2$, we get
\section*{Problem 3}
% Show how it's derived and where we found the derivation.
To derive the discretized version of the Poisson equation, we first need
the taylor expansion for $u(x)$ around $x + h$ and $x - h$.
\begin{align*}
u(x+h) &= u(x) + u'(x) h + \frac{1}{2} u''(x) h^2 + \frac{1}{6} u'''(x) h^3 + \mathcal{O}(h^4)
\end{align*}
\begin{align*}
u(x-h) &= u(x) - u'(x) h + \frac{1}{2} u''(x) h^2 - \frac{1}{6} u'''(x) h^3 + \mathcal{O}(h^4)
\end{align*}
If we add the equations above, we get this new equation:
\begin{align*}
u(x+h) + u(x-h) &= 2 u(x) + u''(x) h^2 + \mathcal{O}(h^4) \\
u(x+h) - 2 u(x) + u(x-h) + \mathcal{O}(h^4) &= u''(x) h^2 \\
u''(x) &= \frac{u(x+h) - 2 u(x) + u(x-h)}{h^2} + \mathcal{O}(h^2) \\
u_i''(x) &= \frac{u_{i+1} - 2 u_i + u_{i-1}}{h^2} + \mathcal{O}(h^2) \\
\end{align*}
We can then replace $\frac{d^2u}{dx^2}$ with the RHS (right-hand side) of the equation:
\begin{align*}
- \frac{d^2u}{dx^2} &= 100 e^{-10x} \\
\frac{ - u_{i+1} + 2 u_i - u_{i-1}}{h^2} + \mathcal{O}(h^2) &= 100 e^{-10x} \\
\end{align*}
And lastly, we leave out $\mathcal{O}(h^2)$ and change $u_i$ to $v_i$ to
differentiate between the exact solution and the approximate solution,
and get the discretized version of the equation:
\begin{align*}
align* \frac{ - u_{i+1} + 2 u_i - u_{i-1}}{h^2} &= 100 e^{-10x} \\
\end{align*}
\section*{Problem 4}