Compare commits
68 Commits
5-solve-pr
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
| b93c1d054a | |||
| 8095773cb8 | |||
| 255a9c4d30 | |||
| 0ec1324c35 | |||
| 12ae9cf087 | |||
| 7d39248a15 | |||
|
|
93f534c9fa | ||
|
|
d1796b6b01 | ||
|
|
b88a9027bc | ||
|
|
e516104576 | ||
|
|
14a46d6057 | ||
|
|
9e900b8369 | ||
|
|
67b23770e1 | ||
|
|
bc5436cf1e | ||
|
|
aa8fc27947 | ||
|
|
f87af40008 | ||
| 5f0363b895 | |||
| c9f9757957 | |||
| 626d8408af | |||
| aba17398d8 | |||
| 3ac132c831 | |||
| 0edaae5b3f | |||
| bb01d6fa79 | |||
| a15f8a1da3 | |||
| 3e7f805937 | |||
| 0a9e484ed3 | |||
| 54f5d4ab5d | |||
| fd04f740fd | |||
| 5147389217 | |||
| 85e469f101 | |||
| 439bcefcb4 | |||
| 02302e1255 | |||
| ca774e434f | |||
| b4325ec185 | |||
| 46d3a78767 | |||
|
|
5cc45d0d02 | ||
|
|
31eb457614 | ||
|
|
4919f488d4 | ||
|
|
1ab0a1a490 | ||
|
|
fc492b5cbf | ||
|
|
8ebd561f0d | ||
| 3cfee4ebdc | |||
| 6e12f2b050 | |||
| c5c64da196 | |||
| c256d9b1da | |||
| 3d87b400d8 | |||
| d886d3761e | |||
| 4e633d13b5 | |||
| 400e8a29df | |||
| 996b99fca3 | |||
|
|
271e3dd944 | ||
|
|
c42426847d | ||
|
|
13cbbc4e0e | ||
| e407ce073e | |||
| f2f50ed3e4 | |||
| 91cc7583af | |||
| 6f5d71e1a4 | |||
| 92bb63abb5 | |||
|
|
afef7c9d1a | ||
|
|
dd16ffd822 | ||
| 9a6eaddf8e | |||
| 2e6b2cf6bc | |||
| 4cf07eb274 | |||
| aee15203df | |||
| b7195f8c17 | |||
| 70a3da3624 | |||
|
|
c26b788503 | ||
| 6cff40e678 |
9
.gitignore
vendored
9
.gitignore
vendored
@ -36,3 +36,12 @@
|
||||
*.log
|
||||
*.out
|
||||
*.bib
|
||||
*.synctex.gz
|
||||
*.bbl
|
||||
|
||||
# C++ specifics
|
||||
src/*
|
||||
!src/Makefile
|
||||
!src/*.cpp
|
||||
!src/*.hpp
|
||||
!src/*.py
|
||||
|
||||
33
README.md
33
README.md
@ -3,3 +3,36 @@
|
||||
## Practical information
|
||||
|
||||
- [Project](https://anderkve.github.io/FYS3150/book/projects/project1.html)
|
||||
|
||||
## How to compile C++ code
|
||||
|
||||
Make sure that you are inside the **src** directory before compiling the code.
|
||||
|
||||
Now you can execute the command shown under to compile:
|
||||
|
||||
```
|
||||
make
|
||||
```
|
||||
|
||||
This will create object files and link them together into 2 executable files.
|
||||
These files are called **main** and **analyticPlot**.
|
||||
To run them, you can simply use the commands below:
|
||||
|
||||
```
|
||||
./main
|
||||
```
|
||||
|
||||
```
|
||||
./analyticPlot
|
||||
```
|
||||
|
||||
## How to generate plots
|
||||
|
||||
For generating the plots, there are 4 Python scripts.
|
||||
You can run each one of them by using this command:
|
||||
|
||||
```
|
||||
python <PythonFile>
|
||||
```
|
||||
|
||||
The plots will be saved inside **latex/images**.
|
||||
|
||||
Binary file not shown.
@ -1,7 +1,9 @@
|
||||
\documentclass[english,notitlepage]{revtex4-1} % defines the basic parameters of the document
|
||||
%For preview: skriv i terminal: latexmk -pdf -pvc filnavn
|
||||
|
||||
|
||||
% Silence warning of revtex4-1
|
||||
\usepackage{silence}
|
||||
\WarningFilter{revtex4-1}{Repair the float}
|
||||
|
||||
% if you want a single-column, remove reprint
|
||||
|
||||
@ -13,7 +15,7 @@
|
||||
%% I recommend downloading TeXMaker, because it includes a large library of the most common packages.
|
||||
|
||||
\usepackage{physics,amssymb} % mathematical symbols (physics imports amsmath)
|
||||
\include{amsmath}
|
||||
\usepackage{amsmath}
|
||||
\usepackage{graphicx} % include graphics such as plots
|
||||
\usepackage{xcolor} % set colors
|
||||
\usepackage{hyperref} % automagic cross-referencing (this is GODLIKE)
|
||||
@ -72,10 +74,13 @@
|
||||
%%
|
||||
%% Don't ask me why, I don't know.
|
||||
|
||||
% custom stuff
|
||||
\graphicspath{{./images/}}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\title{Project 1} % self-explanatory
|
||||
\author{Cory Balaton \& Janita Willumsen} % self-explanatory
|
||||
\author{Cory Alexander Balaton \& Janita Ovidie Sandtrøen Willumsen} % self-explanatory
|
||||
\date{\today} % self-explanatory
|
||||
\noaffiliation % ignore this, but keep it.
|
||||
|
||||
@ -84,84 +89,24 @@
|
||||
|
||||
\textit{https://github.uio.no/FYS3150-G2-2023/Project-1}
|
||||
|
||||
\section*{Problem 1}
|
||||
\input{problems/problem1}
|
||||
|
||||
% Do the double integral
|
||||
\begin{align*}
|
||||
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2\\
|
||||
&= \int \int -100 e^{-10x} dx^2 \\
|
||||
&= \int \frac{-100 e^{-10x}}{-10} + c_1 dx \\
|
||||
&= \int 10 e^{-10x} + c_1 dx \\
|
||||
&= \frac{10 e^{-10x}}{-10} + c_1 x + c_2 \\
|
||||
&= -e^{-10x} + c_1 x + c_2
|
||||
\end{align*}
|
||||
\input{problems/problem2}
|
||||
|
||||
Using the boundary conditions, we can find $c_1$ and $c_2$ as shown below:
|
||||
\input{problems/problem3}
|
||||
|
||||
\begin{align*}
|
||||
u(0) &= 0 \\
|
||||
-e^{-10 \cdot 0} + c_1 \cdot 0 + c_2 &= 0 \\
|
||||
-1 + c_2 &= 0 \\
|
||||
c_2 &= 1
|
||||
\end{align*}
|
||||
\input{problems/problem4}
|
||||
|
||||
\begin{align*}
|
||||
u(1) &= 0 \\
|
||||
-e^{-10 \cdot 1} + c_1 \cdot 1 + c_2 &= 0 \\
|
||||
-e^{-10} + c_1 + c_2 &= 0 \\
|
||||
c_1 &= e^{-10} - c_2\\
|
||||
c_1 &= e^{-10} - 1\\
|
||||
\end{align*}
|
||||
\input{problems/problem5}
|
||||
|
||||
Using the values that we found for $c_1$ and $c_2$, we get
|
||||
\input{problems/problem6}
|
||||
|
||||
\begin{align*}
|
||||
u(x) &= -e^{-10x} + (e^{-10} - 1) x + 1 \\
|
||||
&= 1 - (1 - e^{-10}) - e^{-10x}
|
||||
\end{align*}
|
||||
\input{problems/problem7}
|
||||
|
||||
\section*{Problem 2}
|
||||
\input{problems/problem8}
|
||||
|
||||
% Write which .cpp/.hpp/.py (using a link?) files are relevant for this and show the plot generated.
|
||||
\input{problems/problem9}
|
||||
|
||||
\section*{Problem 3}
|
||||
|
||||
% Show how it's derived and where we found the derivation.
|
||||
|
||||
\section*{Problem 4}
|
||||
|
||||
% Show that each iteration of the discretized version naturally creates a matrix equation.
|
||||
|
||||
\section*{Problem 5}
|
||||
|
||||
\subsection*{a)}
|
||||
|
||||
\subsection*{b)}
|
||||
|
||||
\section*{Problem 6}
|
||||
|
||||
\subsection*{a)}
|
||||
|
||||
% Use Gaussian elimination, and then use backwards substitution to solve the equation
|
||||
|
||||
\subsection*{b)}
|
||||
|
||||
% Figure it out
|
||||
|
||||
\section*{Problem 7}
|
||||
|
||||
% Link to relevant files on gh and possibly add some comments
|
||||
|
||||
\section*{Problem 8}
|
||||
|
||||
%link to relvant files and show plots
|
||||
|
||||
\section*{Problem 9}
|
||||
|
||||
% Show the algorithm, then calculate FLOPs, then link to relevant files
|
||||
|
||||
\section*{Problem 10}
|
||||
|
||||
% Time and show result, and link to relevant files
|
||||
\input{problems/problem10}
|
||||
|
||||
\end{document}
|
||||
|
||||
BIN
latex/images/analytical_solution.pdf
Normal file
BIN
latex/images/analytical_solution.pdf
Normal file
Binary file not shown.
BIN
latex/images/problem10.pdf
Normal file
BIN
latex/images/problem10.pdf
Normal file
Binary file not shown.
BIN
latex/images/problem7.pdf
Normal file
BIN
latex/images/problem7.pdf
Normal file
Binary file not shown.
BIN
latex/images/problem8.pdf
Normal file
BIN
latex/images/problem8.pdf
Normal file
Binary file not shown.
BIN
latex/images/problem8_a.pdf
Normal file
BIN
latex/images/problem8_a.pdf
Normal file
Binary file not shown.
BIN
latex/images/problem8_b.pdf
Normal file
BIN
latex/images/problem8_b.pdf
Normal file
Binary file not shown.
BIN
latex/images/problem8_c.pdf
Normal file
BIN
latex/images/problem8_c.pdf
Normal file
Binary file not shown.
44
latex/problems/problem1.tex
Normal file
44
latex/problems/problem1.tex
Normal file
@ -0,0 +1,44 @@
|
||||
\section*{Problem 1}
|
||||
|
||||
First, we rearrange the equation.
|
||||
|
||||
\begin{align*}
|
||||
- \frac{d^2u}{dx^2} &= 100 e^{-10x} \\
|
||||
\frac{d^2u}{dx^2} &= -100 e^{-10x} \\
|
||||
\end{align*}
|
||||
|
||||
Now we find $u(x)$.
|
||||
|
||||
% Do the double integral
|
||||
\begin{align*}
|
||||
u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2 \\
|
||||
&= \int \int -100 e^{-10x} dx^2 \\
|
||||
&= \int \frac{-100 e^{-10x}}{-10} + c_1 dx \\
|
||||
&= \int 10 e^{-10x} + c_1 dx \\
|
||||
&= \frac{10 e^{-10x}}{-10} + c_1 x + c_2 \\
|
||||
&= -e^{-10x} + c_1 x + c_2
|
||||
\end{align*}
|
||||
|
||||
Using the boundary conditions, we can find $c_1$ and $c_2$
|
||||
|
||||
\begin{align*}
|
||||
u(0) &= 0 \\
|
||||
-e^{-10 \cdot 0} + c_1 \cdot 0 + c_2 &= 0 \\
|
||||
-1 + c_2 &= 0 \\
|
||||
c_2 &= 1
|
||||
\end{align*}
|
||||
|
||||
\begin{align*}
|
||||
u(1) &= 0 \\
|
||||
-e^{-10 \cdot 1} + c_1 \cdot 1 + c_2 &= 0 \\
|
||||
-e^{-10} + c_1 + c_2 &= 0 \\
|
||||
c_1 &= e^{-10} - c_2\\
|
||||
c_1 &= e^{-10} - 1\\
|
||||
\end{align*}
|
||||
|
||||
Using the values that we found for $c_1$ and $c_2$, we get
|
||||
|
||||
\begin{align*}
|
||||
u(x) &= -e^{-10x} + (e^{-10} - 1) x + 1 \\
|
||||
&= 1 - (1 - e^{-10})x - e^{-10x}
|
||||
\end{align*}
|
||||
8
latex/problems/problem10.tex
Normal file
8
latex/problems/problem10.tex
Normal file
@ -0,0 +1,8 @@
|
||||
\section*{Problem 10}
|
||||
|
||||
% Time and show result, and link to relevant files
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.7\linewidth]{images/problem10.pdf}
|
||||
\caption{Timing of general algorithm vs. special for step sizes $n_{steps}$}
|
||||
\end{figure}
|
||||
13
latex/problems/problem2.tex
Normal file
13
latex/problems/problem2.tex
Normal file
@ -0,0 +1,13 @@
|
||||
\section*{Problem 2}
|
||||
|
||||
The code for generating the points and plotting them can be found under.
|
||||
|
||||
Point generator code: https://github.uio.no/FYS3150-G2-203/Project-1/blob/main/src/analyticPlot.cpp
|
||||
|
||||
Plotting code: https://github.uio.no/FYS3150-G2-2023/Project-1/blob/main/src/analyticPlot.py
|
||||
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.8\linewidth]{images/analytical_solution.pdf}
|
||||
\caption{Plot of the analytical solution $u(x)$.}
|
||||
\end{figure}
|
||||
37
latex/problems/problem3.tex
Normal file
37
latex/problems/problem3.tex
Normal file
@ -0,0 +1,37 @@
|
||||
|
||||
\section*{Problem 3}
|
||||
|
||||
To derive the discretized version of the Poisson equation, we first need
|
||||
the Taylor expansion for $u(x)$ around $x$ for $x + h$ and $x - h$.
|
||||
|
||||
\begin{align*}
|
||||
u(x+h) &= u(x) + u'(x) h + \frac{1}{2} u''(x) h^2 + \frac{1}{6} u'''(x) h^3 + \mathcal{O}(h^4)
|
||||
\end{align*}
|
||||
|
||||
\begin{align*}
|
||||
u(x-h) &= u(x) - u'(x) h + \frac{1}{2} u''(x) h^2 - \frac{1}{6} u'''(x) h^3 + \mathcal{O}(h^4)
|
||||
\end{align*}
|
||||
|
||||
If we add the equations above, we get this new equation:
|
||||
|
||||
\begin{align*}
|
||||
u(x+h) + u(x-h) &= 2 u(x) + u''(x) h^2 + \mathcal{O}(h^4) \\
|
||||
u(x+h) - 2 u(x) + u(x-h) + \mathcal{O}(h^4) &= u''(x) h^2 \\
|
||||
u''(x) &= \frac{u(x+h) - 2 u(x) + u(x-h)}{h^2} + \mathcal{O}(h^2) \\
|
||||
u_i''(x) &= \frac{u_{i+1} - 2 u_i + u_{i-1}}{h^2} + \mathcal{O}(h^2) \\
|
||||
\end{align*}
|
||||
|
||||
We can then replace $\frac{d^2u}{dx^2}$ with the RHS (right-hand side) of the equation:
|
||||
|
||||
\begin{align*}
|
||||
- \frac{d^2u}{dx^2} &= f(x) \\
|
||||
\frac{ - u_{i+1} + 2 u_i - u_{i-1}}{h^2} + \mathcal{O}(h^2) &= f_i \\
|
||||
\end{align*}
|
||||
|
||||
And lastly, we leave out $\mathcal{O}(h^2)$ and change $u_i$ to $v_i$ to
|
||||
differentiate between the exact solution and the approximate solution,
|
||||
and get the discretized version of the equation:
|
||||
|
||||
\begin{align*}
|
||||
\frac{ - v_{i+1} + 2 v_i - v_{i-1}}{h^2} &= 100 e^{-10x_i} \\
|
||||
\end{align*}
|
||||
44
latex/problems/problem4.tex
Normal file
44
latex/problems/problem4.tex
Normal file
@ -0,0 +1,44 @@
|
||||
\section*{Problem 4}
|
||||
|
||||
% Show that each iteration of the discretized version naturally creates a matrix equation.
|
||||
|
||||
The value of $u(x_{0})$ and $u(x_{1})$ is known, using the discretized equation we solve for $\vec{v}$. This will result in a set of equations
|
||||
\begin{align*}
|
||||
- v_{0} + 2 v_{1} - v_{2} &= h^{2} \cdot f_{1} \\
|
||||
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
|
||||
\vdots & \\
|
||||
- v_{m-2} + 2 v_{m-1} - v_{m} &= h^{2} \cdot f_{m-1} \\
|
||||
\end{align*}
|
||||
|
||||
where $v_{i} = v(x_{i})$ and $f_{i} = f(x_{i})$. Rearranging the first and last equation, moving terms of known boundary values to the RHS
|
||||
\begin{align*}
|
||||
2 v_{1} - v_{2} &= h^{2} \cdot f_{1} + v_{0} \\
|
||||
- v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\
|
||||
\vdots & \\
|
||||
- v_{m-2} + 2 v_{m-1} &= h^{2} \cdot f_{m-1} + v_{m} \\
|
||||
\end{align*}
|
||||
|
||||
We now have a number of linear eqations, corresponding to the number of unknown values, which can be represented as an augmented matrix
|
||||
\begin{align*}
|
||||
\left[
|
||||
\begin{matrix}
|
||||
2v_{1} & -v_{2} & 0 & \dots & 0 \\
|
||||
-v_{1} & 2v_{2} & -v_{3} & 0 & \\
|
||||
0 & -v_{2} & 2v_{3} & -v_{4} & \\
|
||||
\vdots & & & \ddots & \vdots \\
|
||||
0 & & & -v_{m-2} & 2v_{m-1} \\
|
||||
\end{matrix}
|
||||
\left|
|
||||
\,
|
||||
\begin{matrix}
|
||||
g_{1} \\
|
||||
g_{2} \\
|
||||
g_{2} \\
|
||||
\vdots \\
|
||||
g_{m-1} \\
|
||||
\end{matrix}
|
||||
\right.
|
||||
\right]
|
||||
\end{align*}
|
||||
Since the boundary values are equal to $0$ the RHS can be renamed $g_{i} = h^{2} f_{i}$ for all $i$. An augmented matrix can be represented as $\boldsymbol{A} \vec{x} = \vec{b}$. In this case $\boldsymbol{A}$ is the coefficient matrix with a tridiagonal signature $(-1, 2, -1)$ and dimension $n \cross n$, where $n=m-2$.
|
||||
|
||||
6
latex/problems/problem5.tex
Normal file
6
latex/problems/problem5.tex
Normal file
@ -0,0 +1,6 @@
|
||||
|
||||
\section*{Problem 5}
|
||||
|
||||
\subsection*{a \& b)}
|
||||
|
||||
$n = m - 2$ since when solving for $\vec{v}$, we are finding the solutions for all the points that are in between the boundaries and not the boundaries themselves. $\vec{v}^*$ on the other hand includes the boundary points.
|
||||
47
latex/problems/problem6.tex
Normal file
47
latex/problems/problem6.tex
Normal file
@ -0,0 +1,47 @@
|
||||
\section*{Problem 6}
|
||||
|
||||
\subsection*{a)}
|
||||
% Use Gaussian elimination, and then use backwards substitution to solve the equation
|
||||
Renaming the sub-, main-, and supdiagonal of matrix $\boldsymbol{A}$
|
||||
\begin{align*}
|
||||
\vec{a} &= [a_{2}, a_{3}, ..., a_{n-1}, a_{n}] \\
|
||||
\vec{b} &= [b_{1}, b_{2}, b_{3}, ..., b_{n-1}, b_{n}] \\
|
||||
\vec{c} &= [c_{1}, c_{2}, c_{3}, ..., c_{n-1}] \\
|
||||
\end{align*}
|
||||
|
||||
Following Thomas algorithm for gaussian elimination, we first perform a forward sweep followed by a backward sweep to obtain $\vec{v}$
|
||||
\begin{algorithm}[H]
|
||||
\caption{General algorithm}\label{algo:general}
|
||||
\begin{algorithmic}
|
||||
\Procedure{Forward sweep}{$\vec{a}$, $\vec{b}$, $\vec{c}$}
|
||||
\State $n \leftarrow$ length of $\vec{b}$
|
||||
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
|
||||
\State $\hat{b}_{1} \leftarrow b_{1}$ \Comment{Handle first element in main diagonal outside loop}
|
||||
\State $\hat{g}_{1} \leftarrow g_{1}$
|
||||
\For{$i = 2, 3, ..., n$}
|
||||
\State $d \leftarrow \frac{a_{i}}{\hat{b}_{i-1}}$ \Comment{Calculating common expression}
|
||||
\State $\hat{b}_{i} \leftarrow b_{i} - d \cdot c_{i-1}$
|
||||
\State $\hat{g}_{i} \leftarrow g_{i} - d \cdot \hat{g}_{i-1}$
|
||||
\EndFor
|
||||
\Return $\vec{\hat{b}}$, $\vec{\hat{g}}$
|
||||
\EndProcedure
|
||||
|
||||
\Procedure{Backward sweep}{$\vec{\hat{b}}$, $\vec{\hat{g}}$}
|
||||
\State $n \leftarrow$ length of $\vec{\hat{b}}$
|
||||
\State $\vec{v} \leftarrow$ vector of length $n$.
|
||||
\State $v_{n} \leftarrow \frac{\hat{g}_{n}}{\hat{b}_{n}}$
|
||||
\For{$i = n-1, n-2, ..., 1$}
|
||||
\State $v_{i} \leftarrow \frac{\hat{g}_{i} - c_{i} \cdot v_{i+1}}{\hat{b}_{i}}$
|
||||
\EndFor
|
||||
\Return $\vec{v}$
|
||||
\EndProcedure
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
|
||||
|
||||
\subsection*{b)}
|
||||
% Figure out FLOPs
|
||||
Counting the number of FLOPs for the general algorithm by looking at one procedure at a time.
|
||||
For every iteration of i in forward sweep we have 1 division, 2 multiplications, and 2 subtractions, resulting in $5(n-1)$ FLOPs.
|
||||
For backward sweep we have 1 division, and for every iteration of i we have 1 subtraction, 1 multiplication, and 1 division, resulting in $3(n-1)+1$ FLOPs.
|
||||
Total FLOPs for the general algorithm is $8(n-1)+1$.
|
||||
14
latex/problems/problem7.tex
Normal file
14
latex/problems/problem7.tex
Normal file
@ -0,0 +1,14 @@
|
||||
\section*{Problem 7}
|
||||
|
||||
\subsection*{a)}
|
||||
% Link to relevant files on gh and possibly add some comments
|
||||
The code can be found at https://github.uio.no/FYS3150-G2-2023/Project-1/blob/main/src/generalAlgorithm.cpp
|
||||
|
||||
\subsection*{b)}
|
||||
Increasing the number of steps results in an approximation close to the exact solution.
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.8\linewidth]{images/problem7.pdf}
|
||||
\caption{Plot showing the numeric solution of $u_{approx}$ for $n_{steps}$ and the exact solution $u_{exact}$.}
|
||||
\end{figure}
|
||||
|
||||
27
latex/problems/problem8.tex
Normal file
27
latex/problems/problem8.tex
Normal file
@ -0,0 +1,27 @@
|
||||
\section*{Problem 8}
|
||||
|
||||
%link to relvant files and show plots
|
||||
\subsection*{a)}
|
||||
Increasing number of steps result in a decrease of absolute error.
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.8\linewidth]{images/problem8_a.pdf}
|
||||
\caption{Absolute error for different step sizes $n_{steps}$.}
|
||||
\end{figure}
|
||||
|
||||
\subsection*{b)}
|
||||
Increasing number of steps also result in a decrease of absolute error.
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.8\linewidth]{images/problem8_b.pdf}
|
||||
\caption{Relative error for different step sizes $n_{steps}$.}
|
||||
\end{figure}
|
||||
|
||||
\subsection*{c)}
|
||||
Increasing number of steps result in a decrease of maximum relative error, up to a certain number of steps. At $n_{steps} \approx 10^{5}$ the maximumrelative error increase.
|
||||
This can be related to loss of numerical precicion when step size is small.
|
||||
\begin{figure}[H]
|
||||
\centering
|
||||
\includegraphics[width=0.7\linewidth]{images/problem8_c.pdf}
|
||||
\caption{Maximum relative error for each step sizes $n_{steps}$.}
|
||||
\end{figure}
|
||||
55
latex/problems/problem9.tex
Normal file
55
latex/problems/problem9.tex
Normal file
@ -0,0 +1,55 @@
|
||||
\section*{Problem 9}
|
||||
|
||||
\subsection*{a)}
|
||||
% Specialize algorithm
|
||||
The special algorithm does not require the values of all $a_{i}$, $b_{i}$, $c_{i}$.
|
||||
We find the values of $\hat{b}_{i}$ from simplifying the general case
|
||||
\begin{align*}
|
||||
\hat{b}_{i} &= b_{i} - \frac{a_{i} \cdot c_{i-1}}{\hat{b}_{i-1}} \\
|
||||
\hat{b}_{i} &= 2 - \frac{1}{\hat{b}_{i-1}}
|
||||
\end{align*}
|
||||
Calculating the first values to see a pattern
|
||||
\begin{align*}
|
||||
\hat{b}_{1} &= 2 \\
|
||||
\hat{b}_{2} &= 2 - \frac{1}{2} = \frac{3}{2} \\
|
||||
\hat{b}_{3} &= 2 - \frac{1}{\frac{3}{2}} = \frac{4}{3} \\
|
||||
\hat{b}_{4} &= 2 - \frac{1}{\frac{4}{3}} = \frac{5}{4} \\
|
||||
\vdots & \\
|
||||
\hat{b}_{i} &= \frac{i+1}{i} && \text{for $i = 1, 2, ..., n$}
|
||||
\end{align*}
|
||||
|
||||
|
||||
\begin{algorithm}[H]
|
||||
\caption{Special algorithm}\label{algo:special}
|
||||
\begin{algorithmic}
|
||||
\Procedure{Forward sweep}{$\vec{b}$}
|
||||
\State $n \leftarrow$ length of $\vec{b}$
|
||||
\State $\vec{\hat{b}}$, $\vec{\hat{g}} \leftarrow$ vectors of length $n$.
|
||||
\State $\hat{b}_{1} \leftarrow 2$ \Comment{Handle first element in main diagonal outside loop}
|
||||
\State $\hat{g}_{1} \leftarrow g_{1}$
|
||||
\For{$i = 2, 3, ..., n$}
|
||||
\State $\hat{b}_{i} \leftarrow \frac{i+1}{i}$
|
||||
\State $\hat{g}_{i} \leftarrow g_{i} + \frac{\hat{g}_{i-1}}{\hat{b}_{i-1}}$
|
||||
\EndFor
|
||||
\Return $\vec{\hat{b}}$, $\vec{\hat{g}}$
|
||||
\EndProcedure
|
||||
|
||||
\Procedure{Backward sweep}{$\vec{\hat{b}}$, $\vec{\hat{g}}$}
|
||||
\State $n \leftarrow$ length of $\vec{\hat{b}}$
|
||||
\State $\vec{v} \leftarrow$ vector of length $n$.
|
||||
\State $v_{n} \leftarrow \frac{\hat{g}_{n}}{\hat{b}_{n}}$
|
||||
\For{$i = n-1, n-2, ..., 1$}
|
||||
\State $v_{i} \leftarrow \frac{\hat{g}_{i} + v_{i+1}}{\hat{b}_{i}}$
|
||||
\EndFor
|
||||
\Return $\vec{v}$
|
||||
\EndProcedure
|
||||
\end{algorithmic}
|
||||
\end{algorithm}
|
||||
|
||||
|
||||
\subsection*{b)}
|
||||
% Find FLOPs
|
||||
For every iteration of i in forward sweep we have 2 divisions, and 2 additions, resulting in $4(n-1)$ FLOPs.
|
||||
For backward sweep we have 1 division, and for every iteration of i we have 1 addition, and 1 division, resulting in $2(n-1)+1$ FLOPs.
|
||||
Total FLOPs for the special algorithm is $6(n-1)+1$.
|
||||
|
||||
30
src/Makefile
Normal file
30
src/Makefile
Normal file
@ -0,0 +1,30 @@
|
||||
CC=g++
|
||||
|
||||
CCFLAGS= -std=c++11
|
||||
|
||||
OBJS=generalAlgorithm.o specialAlgorithm.o funcs.o
|
||||
|
||||
EXEC=main analyticPlot
|
||||
|
||||
.PHONY: clean create_dirs
|
||||
|
||||
all: create_dirs $(EXEC)
|
||||
|
||||
main: main.o $(OBJS)
|
||||
$(CC) $(CCFLAGS) -o $@ $^
|
||||
|
||||
analyticPlot: analyticPlot.o
|
||||
$(CC) $(CCFLAGS) -o $@ $^
|
||||
|
||||
%.o: %.cpp
|
||||
$(CC) $(CCFLAGS) -c -o $@ $^
|
||||
|
||||
clean:
|
||||
rm *.o
|
||||
rm $(EXEC)
|
||||
rm -r output
|
||||
|
||||
create_dirs:
|
||||
mkdir -p output/general
|
||||
mkdir -p output/special
|
||||
mkdir -p output/error
|
||||
55
src/analyticPlot.cpp
Normal file
55
src/analyticPlot.cpp
Normal file
@ -0,0 +1,55 @@
|
||||
#include <iostream>
|
||||
#include <cmath>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <numeric>
|
||||
#include <fstream>
|
||||
#include <iomanip>
|
||||
|
||||
#define RANGE 1000
|
||||
#define FILENAME "output/analytical_solution.txt"
|
||||
|
||||
double u(double x);
|
||||
void generate_range(std::vector<double> &vec, double start, double stop, int n);
|
||||
void write_analytical_solution(std::string filename, int n);
|
||||
|
||||
int main() {
|
||||
write_analytical_solution(FILENAME, RANGE);
|
||||
|
||||
return 0;
|
||||
};
|
||||
|
||||
double u(double x) {
|
||||
return 1 - (1 - exp(-10))*x - exp(-10*x);
|
||||
};
|
||||
|
||||
void generate_range(std::vector<double> &vec, double start, double stop, int n) {
|
||||
double step = (stop - start) / n;
|
||||
|
||||
for (int i = 0; i <= vec.size(); i++) {
|
||||
vec[i] = i * step;
|
||||
}
|
||||
}
|
||||
|
||||
void write_analytical_solution(std::string filename, int n) {
|
||||
std::vector<double> x(n), y(n);
|
||||
generate_range(x, 0.0, 1.0, n);
|
||||
|
||||
// Set up output file and strem
|
||||
std::ofstream outfile;
|
||||
outfile.open(filename);
|
||||
|
||||
// Parameters for formatting
|
||||
int width = 12;
|
||||
int prec = 4;
|
||||
|
||||
// Calculate u(x) and write to file
|
||||
for (int i = 0; i <= x.size(); i++) {
|
||||
y[i] = u(x[i]);
|
||||
outfile << std::setw(width) << std::setprecision(prec) << std::scientific << x[i]
|
||||
<< std::setw(width) << std::setprecision(prec) << std::scientific << y[i]
|
||||
<< std::endl;
|
||||
}
|
||||
outfile.close();
|
||||
}
|
||||
|
||||
38
src/funcs.cpp
Normal file
38
src/funcs.cpp
Normal file
@ -0,0 +1,38 @@
|
||||
#include "funcs.hpp"
|
||||
|
||||
double f(double x) {
|
||||
return 100*std::exp(-10*x);
|
||||
}
|
||||
|
||||
double u(double x) {
|
||||
return 1. - (1. - std::exp(-10.))*x - std::exp(-10.*x);
|
||||
}
|
||||
|
||||
void build_g_vec(int n_steps, arma::vec& g_vec) {
|
||||
g_vec.resize(n_steps-1);
|
||||
|
||||
double step_size = 1./ (double) n_steps;
|
||||
for (int i=0; i < n_steps-1; i++) {
|
||||
g_vec(i) = step_size*step_size*f((i+1)*step_size);
|
||||
}
|
||||
}
|
||||
|
||||
void build_arrays(
|
||||
int n_steps,
|
||||
arma::vec& sub_diag,
|
||||
arma::vec& main_diag,
|
||||
arma::vec& sup_diag,
|
||||
arma::vec& g_vec
|
||||
)
|
||||
{
|
||||
sub_diag.resize(n_steps-2);
|
||||
main_diag.resize(n_steps-1);
|
||||
sup_diag.resize(n_steps-2);
|
||||
|
||||
sub_diag.fill(-1);
|
||||
main_diag.fill(2);
|
||||
sup_diag.fill(-1);
|
||||
|
||||
build_g_vec(n_steps, g_vec);
|
||||
}
|
||||
|
||||
24
src/funcs.hpp
Normal file
24
src/funcs.hpp
Normal file
@ -0,0 +1,24 @@
|
||||
#ifndef __FUNCS__
|
||||
#define __FUNCS__
|
||||
|
||||
#include <armadillo>
|
||||
#include <cmath>
|
||||
|
||||
#define PRECISION 8
|
||||
|
||||
#define N_STEPS_EXP 7
|
||||
|
||||
double f(double x);
|
||||
|
||||
double u(double x);
|
||||
|
||||
void build_g_vec(int n_steps, arma::vec& g_vec);
|
||||
|
||||
void build_arrays(
|
||||
int n_steps,
|
||||
arma::vec& sub_diag,
|
||||
arma::vec& main_diag,
|
||||
arma::vec& sup_diag,
|
||||
arma::vec& g_vec
|
||||
);
|
||||
#endif
|
||||
84
src/generalAlgorithm.cpp
Normal file
84
src/generalAlgorithm.cpp
Normal file
@ -0,0 +1,84 @@
|
||||
#include "funcs.hpp"
|
||||
#include "generalAlgorithm.hpp"
|
||||
#include <cmath>
|
||||
|
||||
arma::vec& general_algorithm(
|
||||
arma::vec& sub_diag,
|
||||
arma::vec& main_diag,
|
||||
arma::vec& sup_diag,
|
||||
arma::vec& g_vec
|
||||
)
|
||||
{
|
||||
int n = g_vec.n_elem;
|
||||
double d;
|
||||
|
||||
for (int i = 1; i < n; i++) {
|
||||
d = sub_diag(i-1) / main_diag(i-1);
|
||||
main_diag(i) -= d*sup_diag(i-1);
|
||||
g_vec(i) -= d*g_vec(i-1);
|
||||
}
|
||||
|
||||
g_vec(n-1) /= main_diag(n-1);
|
||||
|
||||
for (int i = n-2; i >= 0; i--) {
|
||||
g_vec(i) = (g_vec(i) - sup_diag(i) * g_vec(i+1)) / main_diag(i);
|
||||
}
|
||||
return g_vec;
|
||||
}
|
||||
|
||||
void general_algorithm_main()
|
||||
{
|
||||
arma::vec sub_diag, main_diag, sup_diag, g_vec, v_vec;
|
||||
std::ofstream ofile;
|
||||
int steps;
|
||||
double step_size;
|
||||
|
||||
for (int i = 0; i < N_STEPS_EXP; i++) {
|
||||
steps = std::pow(10, i+1);
|
||||
step_size = 1./(double) steps;
|
||||
|
||||
build_arrays(steps, sub_diag, main_diag, sup_diag, g_vec);
|
||||
|
||||
v_vec = general_algorithm(sub_diag, main_diag, sup_diag, g_vec);
|
||||
|
||||
ofile.open("output/general/out_" + std::to_string(steps) + ".txt");
|
||||
|
||||
for (int j=0; j < v_vec.n_elem; j++) {
|
||||
ofile << std::setprecision(PRECISION) << std::scientific << step_size*(j+1) << ","
|
||||
<< std::setprecision(PRECISION) << std::scientific << v_vec(j) << std::endl;
|
||||
}
|
||||
ofile.close();
|
||||
}
|
||||
}
|
||||
|
||||
void general_algorithm_error()
|
||||
{
|
||||
arma::vec sub_diag, main_diag, sup_diag, g_vec, v_vec;
|
||||
std::ofstream ofile;
|
||||
int steps;
|
||||
double step_size, abs_err, rel_err, u_i, v_i;
|
||||
|
||||
for (int i=0; i < N_STEPS_EXP; i++) {
|
||||
steps = std::pow(10, i+1);
|
||||
step_size = 1./(double) steps;
|
||||
|
||||
build_arrays(steps, sub_diag, main_diag, sup_diag, g_vec);
|
||||
|
||||
v_vec = general_algorithm(sub_diag, main_diag, sup_diag, g_vec);
|
||||
|
||||
ofile.open("output/error/out_" + std::to_string(steps) + ".txt");
|
||||
|
||||
for (int j=0; j < v_vec.n_elem; j++) {
|
||||
u_i = u(step_size*(j+1));
|
||||
v_i = v_vec(j);
|
||||
abs_err = u_i - v_i;
|
||||
ofile << std::setprecision(PRECISION) << std::scientific
|
||||
<< step_size*(j+1) << ","
|
||||
<< std::setprecision(PRECISION) << std::scientific
|
||||
<< std::log10(std::abs(abs_err)) << ","
|
||||
<< std::setprecision(PRECISION) << std::scientific
|
||||
<< std::log10(std::abs(abs_err/u_i)) << std::endl;
|
||||
}
|
||||
ofile.close();
|
||||
}
|
||||
}
|
||||
18
src/generalAlgorithm.hpp
Normal file
18
src/generalAlgorithm.hpp
Normal file
@ -0,0 +1,18 @@
|
||||
#ifndef __GENERAL_ALG__
|
||||
#define __GENERAL_ALG__
|
||||
|
||||
#include <armadillo>
|
||||
#include <iomanip>
|
||||
|
||||
arma::vec& general_algorithm(
|
||||
arma::vec& sub_diag,
|
||||
arma::vec& main_diag,
|
||||
arma::vec& sup_diag,
|
||||
arma::vec& g_vec
|
||||
);
|
||||
|
||||
void general_algorithm_main();
|
||||
|
||||
void general_algorithm_error();
|
||||
|
||||
#endif
|
||||
68
src/main.cpp
Normal file
68
src/main.cpp
Normal file
@ -0,0 +1,68 @@
|
||||
#include <armadillo>
|
||||
#include <cmath>
|
||||
#include <ctime>
|
||||
#include <fstream>
|
||||
#include <iomanip>
|
||||
#include <ios>
|
||||
#include <string>
|
||||
|
||||
#include "funcs.hpp"
|
||||
#include "generalAlgorithm.hpp"
|
||||
#include "specialAlgorithm.hpp"
|
||||
|
||||
#define TIMING_ITERATIONS 5
|
||||
|
||||
void timing() {
|
||||
arma::vec sub_diag, main_diag, sup_diag, g_vec;
|
||||
int n_steps;
|
||||
|
||||
std::ofstream ofile;
|
||||
ofile.open("output/timing.txt");
|
||||
|
||||
// Timing
|
||||
for (int i=1; i < N_STEPS_EXP; i++) {
|
||||
n_steps = std::pow(10, i);
|
||||
clock_t g_1, g_2, s_1, s_2;
|
||||
double g_res = 0, s_res = 0;
|
||||
|
||||
// Repeat a number of times to take an average
|
||||
for (int j=0; j < TIMING_ITERATIONS; j++) {
|
||||
|
||||
build_arrays(n_steps, sub_diag, main_diag, sup_diag, g_vec);
|
||||
|
||||
g_1 = clock();
|
||||
|
||||
general_algorithm(sub_diag, main_diag, sup_diag, g_vec);
|
||||
|
||||
g_2 = clock();
|
||||
|
||||
g_res += (double) (g_2 - g_1) / CLOCKS_PER_SEC;
|
||||
// Rebuild g_vec for the special alg
|
||||
build_g_vec(n_steps, g_vec);
|
||||
|
||||
s_1 = clock();
|
||||
|
||||
special_algorithm(-1., 2., -1., g_vec);
|
||||
|
||||
s_2 = clock();
|
||||
|
||||
s_res += (double) (s_2 - s_1) / CLOCKS_PER_SEC;
|
||||
|
||||
}
|
||||
// Write the average time to file
|
||||
ofile
|
||||
<< n_steps << ","
|
||||
<< g_res / (double) TIMING_ITERATIONS << ","
|
||||
<< s_res / (double) TIMING_ITERATIONS << std::endl;
|
||||
}
|
||||
|
||||
ofile.close();
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
timing();
|
||||
general_algorithm_main();
|
||||
general_algorithm_error();
|
||||
special_algorithm_main();
|
||||
}
|
||||
19
src/plot_analytic_solution.py
Normal file
19
src/plot_analytic_solution.py
Normal file
@ -0,0 +1,19 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def main():
|
||||
FILENAME = "../latex/images/analytical_solution.pdf"
|
||||
x = []
|
||||
v = []
|
||||
|
||||
with open('output/analytical_solution.txt') as f:
|
||||
for line in f:
|
||||
a, b = line.strip().split()
|
||||
x.append(float(a))
|
||||
v.append(float(b))
|
||||
|
||||
plt.plot(x, v)
|
||||
plt.savefig(FILENAME)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
30
src/plot_general_alg.py
Normal file
30
src/plot_general_alg.py
Normal file
@ -0,0 +1,30 @@
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
analytical_func = lambda x: 1 - (1 - np.exp(-10))*x - np.exp(-10*x)
|
||||
|
||||
def main():
|
||||
for i in range(7):
|
||||
x = []
|
||||
y = []
|
||||
x.append(0.)
|
||||
y.append(0.)
|
||||
with open(f"output/general/out_{10**(i+1)}.txt", "r") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
x_i, y_i = line.strip().split(",")
|
||||
x.append(float(x_i))
|
||||
y.append(float(y_i))
|
||||
|
||||
x.append(1.)
|
||||
y.append(0.)
|
||||
|
||||
plt.plot(x, y, label=f"n$_{{steps}} = 10^{i+1}$")
|
||||
|
||||
x = np.linspace(0, 1, 1001)
|
||||
plt.plot(x, analytical_func(x), label=f"u$_{{exact}}$")
|
||||
plt.legend()
|
||||
plt.savefig("../latex/images/problem7.pdf")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
40
src/plot_general_alg_error.py
Normal file
40
src/plot_general_alg_error.py
Normal file
@ -0,0 +1,40 @@
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# plt.rc('text', usetex=True)
|
||||
# plt.rc('font', family='serif')
|
||||
|
||||
def main():
|
||||
for i in range(7):
|
||||
x = []
|
||||
abs_err = []
|
||||
rel_err = []
|
||||
with open(f"output/error/out_{10**(i+1)}.txt", "r") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
x_i, abs_err_i, rel_err_i = line.strip().split(",")
|
||||
x.append(float(x_i))
|
||||
abs_err.append(float(abs_err_i))
|
||||
rel_err.append(float(rel_err_i))
|
||||
|
||||
plt.figure(1)
|
||||
plt.plot(x, abs_err, label=f"n$_{{steps}} = 10^{i+1}$")
|
||||
plt.figure(2)
|
||||
plt.plot(x, rel_err, label=f"n$_{{steps}} = 10^{i+1}$")
|
||||
|
||||
plt.figure(3)
|
||||
plt.plot(i+1, max(rel_err), marker="o", markersize=10)
|
||||
|
||||
plt.figure(1)
|
||||
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
|
||||
plt.figure(2)
|
||||
plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
|
||||
|
||||
plt.figure(1)
|
||||
plt.savefig("../latex/images/problem8_a.pdf", bbox_inches="tight")
|
||||
plt.figure(2)
|
||||
plt.savefig("../latex/images/problem8_b.pdf", bbox_inches="tight")
|
||||
plt.figure(3)
|
||||
plt.savefig("../latex/images/problem8_c.pdf", bbox_inches="tight")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
52
src/specialAlgorithm.cpp
Normal file
52
src/specialAlgorithm.cpp
Normal file
@ -0,0 +1,52 @@
|
||||
#include "funcs.hpp"
|
||||
#include "specialAlgorithm.hpp"
|
||||
|
||||
arma::vec& special_algorithm(
|
||||
double sub_sig,
|
||||
double main_sig,
|
||||
double sup_sig,
|
||||
arma::vec& g_vec
|
||||
)
|
||||
{
|
||||
int n = g_vec.n_elem;
|
||||
arma::vec diag = arma::vec(n);
|
||||
|
||||
for (int i = 1; i < n; i++) {
|
||||
// Calculate values for main diagonal based on indices
|
||||
diag(i-1) = (double)(i+1) / i;
|
||||
g_vec(i) += g_vec(i-1) / diag(i-1);
|
||||
}
|
||||
// The last element in main diagonal has value (i+1)/i = (n+1)/n
|
||||
g_vec(n-1) /= (double)(n+1) / (n);
|
||||
|
||||
for (int i = n-2; i >= 0; i--) {
|
||||
g_vec(i) = (g_vec(i) + g_vec(i+1))/ diag(i);
|
||||
}
|
||||
|
||||
return g_vec;
|
||||
}
|
||||
|
||||
void special_algorithm_main()
|
||||
{
|
||||
arma::vec g_vec, v_vec;
|
||||
std::ofstream ofile;
|
||||
int steps;
|
||||
double sub_sig, main_sig, sup_sig, step_size;
|
||||
|
||||
for (int i = 0; i < N_STEPS_EXP; i++) {
|
||||
steps = std::pow(10, i+1);
|
||||
step_size = 1./(double) steps;
|
||||
build_g_vec(steps, g_vec);
|
||||
|
||||
v_vec = special_algorithm(sub_sig, main_sig, sup_sig, g_vec);
|
||||
|
||||
ofile.open("output/special/out_" + std::to_string(steps) + ".txt");
|
||||
|
||||
for (int j=0; j < v_vec.n_elem; j++) {
|
||||
ofile << std::setprecision(PRECISION) << std::scientific << step_size*(j+1) << ","
|
||||
<< std::setprecision(PRECISION) << std::scientific << v_vec(j) << std::endl;
|
||||
}
|
||||
ofile.close();
|
||||
}
|
||||
}
|
||||
|
||||
16
src/specialAlgorithm.hpp
Normal file
16
src/specialAlgorithm.hpp
Normal file
@ -0,0 +1,16 @@
|
||||
#ifndef __SPECIAL_ALG__
|
||||
#define __SPECIAL_ALG__
|
||||
|
||||
#include <armadillo>
|
||||
#include <iomanip>
|
||||
|
||||
arma::vec& special_algorithm(
|
||||
double sub_sig,
|
||||
double main_sig,
|
||||
double sup_sig,
|
||||
arma::vec& g_vec
|
||||
);
|
||||
|
||||
void special_algorithm_main();
|
||||
|
||||
#endif
|
||||
22
src/timing.py
Normal file
22
src/timing.py
Normal file
@ -0,0 +1,22 @@
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
def main():
|
||||
x = []
|
||||
gen_alg = []
|
||||
spec_alg = []
|
||||
with open(f"output/timing.txt", "r") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
x_i, gen_i, spec_i = line.strip().split(",")
|
||||
x.append(float(x_i))
|
||||
gen_alg.append(float(gen_i))
|
||||
spec_alg.append(float(spec_i))
|
||||
|
||||
plt.plot(x, gen_alg, label=f"General algorithm")
|
||||
plt.plot(x, spec_alg, label=f"Special algorithm")
|
||||
|
||||
plt.legend()
|
||||
plt.savefig("../latex/images/problem10.pdf")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Loading…
Reference in New Issue
Block a user