\section*{Problem 1} % Do the double integral \begin{align*} u(x) &= \int \int \frac{d^2 u}{dx^2} dx^2\\ &= \int \int -100 e^{-10x} dx^2 \\ &= \int \frac{-100 e^{-10x}}{-10} + c_1 dx \\ &= \int 10 e^{-10x} + c_1 dx \\ &= \frac{10 e^{-10x}}{-10} + c_1 x + c_2 \\ &= -e^{-10x} + c_1 x + c_2 \end{align*} Using the boundary conditions, we can find $c_1$ and $c_2$ as shown below: \begin{align*} u(0) &= 0 \\ -e^{-10 \cdot 0} + c_1 \cdot 0 + c_2 &= 0 \\ -1 + c_2 &= 0 \\ c_2 &= 1 \end{align*} \begin{align*} u(1) &= 0 \\ -e^{-10 \cdot 1} + c_1 \cdot 1 + c_2 &= 0 \\ -e^{-10} + c_1 + c_2 &= 0 \\ c_1 &= e^{-10} - c_2\\ c_1 &= e^{-10} - 1\\ \end{align*} Using the values that we found for $c_1$ and $c_2$, we get \begin{align*} u(x) &= -e^{-10x} + (e^{-10} - 1) x + 1 \\ &= 1 - (1 - e^{-10}) - e^{-10x} \end{align*}