\section*{Problem 4} % Show that each iteration of the discretized version naturally creates a matrix equation. The value of $u(x_{0})$ and $u(x_{1})$ is known, using the discretized equation we solve for $\vec{v}$. This will result in a set of equations \begin{align*} - v_{0} + 2 v_{1} - v_{2} &= h^{2} \cdot f_{1} \\ - v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\ \vdots & \\ - v_{m-2} + 2 v_{m-1} - v_{m} &= h^{2} \cdot f_{m-1} \\ \end{align*} where $v_{i} = v(x_{i})$ and $f_{i} = f(x_{i})$. Rearranging the first and last equation, moving terms of known boundary values to the RHS \begin{align*} 2 v_{1} - v_{2} &= h^{2} \cdot f_{1} + v_{0} \\ - v_{1} + 2 v_{2} - v_{3} &= h^{2} \cdot f_{2} \\ \vdots & \\ - v_{m-2} + 2 v_{m-1} &= h^{2} \cdot f_{m-1} + v_{m} \\ \end{align*} We now have a number of linear eqations, corresponding to the number of unknown values, which can be represented as an augmented matrix \begin{align*} \left[ \begin{matrix} 2v_{1} & -v_{2} & 0 & \dots & 0 \\ -v_{1} & 2v_{2} & -v_{3} & 0 & \\ 0 & -v_{2} & 2v_{3} & -v_{4} & \\ \vdots & & & \ddots & \vdots \\ 0 & & & -v_{m-2} & 2v_{m-1} \\ \end{matrix} \left| \, \begin{matrix} g_{1} \\ g_{2} \\ g_{2} \\ \vdots \\ g_{m-1} \\ \end{matrix} \right. \right] \end{align*} Since the boundary values are equal to $0$ the RHS can be renamed $g_{i} = h^{2} f_{i}$ for all $i$. An augmented matrix can be represented as $\boldsymbol{A} \vec{x} = \vec{b}$. In this case $\boldsymbol{A}$ is the coefficient matrix with a tridiagonal signature $(-1, 2, -1)$ and dimension $n \cross n$, where $n=m-2$.