Merge pull request #8 from FYS3150-G2-2023/2-solve-problem-1

Solve problem 1
This commit is contained in:
Janita Ovidie Sandtrøen Willumsen 2023-09-19 14:14:45 +02:00 committed by GitHub Enterprise
commit 281261a798
8 changed files with 23 additions and 1 deletions

Binary file not shown.

View File

@ -89,7 +89,7 @@
\textit{https://github.uio.no/FYS3150-G2-2023/Project-2}
% \input{problems/problem-1}
\input{problems/problem-1}
% \input{problems/problem-2}

View File

@ -0,0 +1,16 @@
\section*{Problem 1}
We are studying the one-dimentional buckling beam, which can be described by the equation
\begin{align*}
\gamma \frac{d^{2} u(x)}{dx^{2}} &= -F u(x) & \rightarrow & & \frac{d^{2} u(x)}{dx^{2}} &= - \frac{F}{\gamma} u(x) \\
\end{align*}
where $\gamma$ is a constant determined by the material of the beam. We want to scale the equation, that is we want to scale by the x-value of the beams endpoint $x=L$.
Scaling will result in a dimensionless variable $\hat{x} = \frac{1}{L}$.
%
\begin{align*}
\frac{d^{2}}{dx^{2}} &= \frac{d}{dx} \frac{d}{dx} = \bigg( \frac{d\hat{x}}{dx} \frac{d}{d\hat{x}} \bigg) \bigg( \frac{d\hat{x}}{dx} \frac{d}{d\hat{x}} \bigg) & \text{where we have used } \frac{d\hat{x}}{dx} \frac{d}{d\hat{x}} = \frac{d}{dx} \frac{d\hat{x}}{d\hat{x}} \\
&= \bigg( \frac{1}{L} \frac{d}{d\hat{x}} \bigg) \bigg( \frac{1}{L} \frac{d}{d\hat{x}} \bigg) = \frac{1}{L^{2}} \frac{d}{d\hat{x}^{2}} & \text{where } \hat{x} \equiv \frac{x}{L} \text{ and } \frac{d\hat{x}}{dx} = \frac{1}{L} \\
\end{align*}
Now we insert the expression into the original equation
\begin{align*}
\frac{d u(\hat{x})}{d\hat{x}^{2}} &= - \frac{F L^{2}}{\gamma} u(\hat{x}) \\
\end{align*}

View File

@ -0,0 +1,2 @@
\section*{Problem 2}

View File

@ -0,0 +1 @@
\section*{Problem 3}

View File

@ -0,0 +1 @@
\section*{Problem 4}

View File

@ -0,0 +1 @@
\section*{Problem 5}

View File

@ -0,0 +1 @@
\section*{Problem 6}