Add program for plotting problem 5 and 6

This commit is contained in:
Janita Willumsen 2023-09-23 15:14:15 +02:00
parent 24f9f88af5
commit 2b103b9e3a

View File

@ -4,42 +4,50 @@ import pandas as pd
import seaborn as sns
sns.set_theme()
sns.dark_palette("seagreen")
"""Write to file (for dense matrix):
Line give size of matrix (column give number of transformations until convergence)
N 1 (2 3 4 5)
3
6
9
12
15
"""
def read_data(filename: str) -> tuple:
N = []
T = []
with open(filename, "r") as f:
lines = f.readlines()
for line in lines:
n_i, t_i = line.strip().split(",")
N.append(float(n_i))
T.append(float(t_i))
return (N, T)
plt.rcParams['text.usetex'] = True
def plot_transformations(save: bool=False) -> None:
# Load data
tridiag = pd.read_csv("../latex/output/transform_tridiag.csv", header=0)
dense = pd.read_csv("../latex/output/transform_dense.csv", header=0)
def plot_similarity_transformations(N: np.ndarray, T: np.ndarray) -> None:
fig, ax = plt.subplots()
ax.plot(N, T, label='Transformations')
ax.loglog(dense['N'], dense['T'], '--', label='Dense')
ax.loglog(tridiag['N'], tridiag['T'], label='Tridiagonal')
ax.set_xlabel('N')
ax.set_ylabel('Similarity transformations')
ax.set_xlim(xmin=N[0], xmax=N[-1])
fig.savefig("similarity_transformation.pdf")
ax.legend()
def plot_eigenvectors():
pass
# Save to file
if save is True:
fig.savefig("../latex/images/transform.pdf")
def plot_eigenvectors(N: int, save: bool=False) -> None:
# Load data based on matrix size
name = "eigenvector_" + str(N)
path = "../latex/output/" + name + ".csv"
eigvec = pd.read_csv(path, header=0)
fig, ax = plt.subplots()
ax.plot(eigvec['x'], eigvec['Vector 1'], label='Vector 1')
ax.plot(eigvec['x'], eigvec['Vector 2'], label='Vector 2')
ax.plot(eigvec['x'], eigvec['Vector 3'], label='Vector 3')
ax.set_xlabel(r'Element $\hat{x}_{i}$')
ax.set_ylabel(r'Value of element $v_{i}$')
ax.legend()
# Save to file
if save is True:
fig.savefig("../latex/images/" + name + ".pdf")
if __name__ == '__main__':
pass
plot_transformations(True)
plot_eigenvectors(6, True)
plot_eigenvectors(100, True)
# plt.show()