Add program for plotting problem 5 and 6
This commit is contained in:
parent
24f9f88af5
commit
2b103b9e3a
66
src/plot.py
66
src/plot.py
@ -4,42 +4,50 @@ import pandas as pd
|
||||
import seaborn as sns
|
||||
|
||||
sns.set_theme()
|
||||
sns.dark_palette("seagreen")
|
||||
|
||||
"""Write to file (for dense matrix):
|
||||
Line give size of matrix (column give number of transformations until convergence)
|
||||
N 1 (2 3 4 5)
|
||||
3
|
||||
6
|
||||
9
|
||||
12
|
||||
15
|
||||
"""
|
||||
|
||||
def read_data(filename: str) -> tuple:
|
||||
N = []
|
||||
T = []
|
||||
with open(filename, "r") as f:
|
||||
lines = f.readlines()
|
||||
for line in lines:
|
||||
n_i, t_i = line.strip().split(",")
|
||||
N.append(float(n_i))
|
||||
T.append(float(t_i))
|
||||
return (N, T)
|
||||
plt.rcParams['text.usetex'] = True
|
||||
|
||||
|
||||
def plot_transformations(save: bool=False) -> None:
|
||||
# Load data
|
||||
tridiag = pd.read_csv("../latex/output/transform_tridiag.csv", header=0)
|
||||
dense = pd.read_csv("../latex/output/transform_dense.csv", header=0)
|
||||
|
||||
def plot_similarity_transformations(N: np.ndarray, T: np.ndarray) -> None:
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(N, T, label='Transformations')
|
||||
ax.loglog(dense['N'], dense['T'], '--', label='Dense')
|
||||
ax.loglog(tridiag['N'], tridiag['T'], label='Tridiagonal')
|
||||
ax.set_xlabel('N')
|
||||
ax.set_ylabel('Similarity transformations')
|
||||
ax.set_xlim(xmin=N[0], xmax=N[-1])
|
||||
fig.savefig("similarity_transformation.pdf")
|
||||
ax.legend()
|
||||
|
||||
# Save to file
|
||||
if save is True:
|
||||
fig.savefig("../latex/images/transform.pdf")
|
||||
|
||||
|
||||
|
||||
def plot_eigenvectors(N: int, save: bool=False) -> None:
|
||||
# Load data based on matrix size
|
||||
name = "eigenvector_" + str(N)
|
||||
path = "../latex/output/" + name + ".csv"
|
||||
eigvec = pd.read_csv(path, header=0)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ax.plot(eigvec['x'], eigvec['Vector 1'], label='Vector 1')
|
||||
ax.plot(eigvec['x'], eigvec['Vector 2'], label='Vector 2')
|
||||
ax.plot(eigvec['x'], eigvec['Vector 3'], label='Vector 3')
|
||||
ax.set_xlabel(r'Element $\hat{x}_{i}$')
|
||||
ax.set_ylabel(r'Value of element $v_{i}$')
|
||||
ax.legend()
|
||||
|
||||
# Save to file
|
||||
if save is True:
|
||||
fig.savefig("../latex/images/" + name + ".pdf")
|
||||
|
||||
|
||||
def plot_eigenvectors():
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
pass
|
||||
plot_transformations(True)
|
||||
plot_eigenvectors(6, True)
|
||||
plot_eigenvectors(100, True)
|
||||
# plt.show()
|
||||
Loading…
Reference in New Issue
Block a user