Merge pull request #11 from FYS3150-G2-2023/janitaws/finish-text-document

Janitaws/finish text document
This commit is contained in:
Cory Balaton 2023-09-25 14:21:56 +02:00 committed by GitHub Enterprise
commit 34ff8a6ab9
15 changed files with 229 additions and 155 deletions

View File

@ -6,39 +6,32 @@
## Compile and run C++ programs ## Compile and run C++ programs
Compiling and linking is done using Make, make sure you are in the root folder. To create executable files, run shell commands Compiling and linking is done using Make, make sure you are in the root directory.
```shell There are two alternative ways to compile the code. The first alternative is to change
cd src/ directory to `src/` and compile
make
```
To run `script-name`
```shell
./main
```
There are two ways of compiling the code.
The first way is to go into the src directory and compile
```shell ```shell
cd src && make cd src && make
``` ```
or you could use make in the project directory The second alternative does not involve changing directory to `src/`, use
make in the projects root directory
```shell ```shell
make code make code
``` ```
and it will compile everything with you needing to move into **src**. You can run any of the compiled programs by changing directory to `src/`, then
You can run any of the compiled programs by going into the src directory
and then doing
```shell ```shell
./program-name ./test_suite
./main
```
Remove object files and executables from `src/`
```shell
make clean
``` ```
@ -64,7 +57,7 @@ If you want to generate the documentation you can do
make docs make docs
``` ```
in the project root, and the documentation will be made into the **docs** in the project root, and the documentation will be made into the `docs/`
directory. directory.
## Generate project document ## Generate project document
@ -75,4 +68,4 @@ If you want to recompile the Pdf file, you can do
make latex make latex
``` ```
and a Pdf file will be produced inside the **latex** directory. and a Pdf file will be produced inside the `latex/` directory.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,13 @@
x,Vector 1,Vector 2,Vector 3,Analytic 1,Analytic 2,Analytic 3
0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00
9.0909090909e-02,1.2013116562e-01,2.3053001908e-01,3.2225269916e-01,1.2013116588e-01,2.3053001915e-01,3.2225270128e-01
1.8181818182e-01,2.3053002022e-01,3.8786838557e-01,4.2206128116e-01,2.3053001915e-01,3.8786838606e-01,4.2206128095e-01
2.7272727273e-01,3.2225270064e-01,4.2206128186e-01,2.3053002150e-01,3.2225270128e-01,4.2206128095e-01,2.3053001915e-01
3.6363636364e-01,3.8786838571e-01,3.2225270018e-01,-1.2013116730e-01,3.8786838606e-01,3.2225270128e-01,-1.2013116588e-01
4.5454545455e-01,4.2206128199e-01,1.2013116659e-01,-3.8786838753e-01,4.2206128095e-01,1.2013116588e-01,-3.8786838606e-01
5.4545454545e-01,4.2206128029e-01,-1.2013116676e-01,-3.8786838497e-01,4.2206128095e-01,-1.2013116588e-01,-3.8786838606e-01
6.3636363636e-01,3.8786838601e-01,-3.2225270035e-01,-1.2013116452e-01,3.8786838606e-01,-3.2225270128e-01,-1.2013116588e-01
7.2727272727e-01,3.2225270138e-01,-4.2206128196e-01,2.3053001725e-01,3.2225270128e-01,-4.2206128095e-01,2.3053001915e-01
8.1818181818e-01,2.3053001839e-01,-3.8786838569e-01,4.2206128036e-01,2.3053001915e-01,-3.8786838606e-01,4.2206128095e-01
9.0909090909e-01,1.2013116693e-01,-2.3053001912e-01,3.2225270306e-01,1.2013116588e-01,-2.3053001915e-01,3.2225270128e-01
1.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00
1 x Vector 1 Vector 2 Vector 3 Analytic 1 Analytic 2 Analytic 3
2 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00
3 9.0909090909e-02 1.2013116562e-01 2.3053001908e-01 3.2225269916e-01 1.2013116588e-01 2.3053001915e-01 3.2225270128e-01
4 1.8181818182e-01 2.3053002022e-01 3.8786838557e-01 4.2206128116e-01 2.3053001915e-01 3.8786838606e-01 4.2206128095e-01
5 2.7272727273e-01 3.2225270064e-01 4.2206128186e-01 2.3053002150e-01 3.2225270128e-01 4.2206128095e-01 2.3053001915e-01
6 3.6363636364e-01 3.8786838571e-01 3.2225270018e-01 -1.2013116730e-01 3.8786838606e-01 3.2225270128e-01 -1.2013116588e-01
7 4.5454545455e-01 4.2206128199e-01 1.2013116659e-01 -3.8786838753e-01 4.2206128095e-01 1.2013116588e-01 -3.8786838606e-01
8 5.4545454545e-01 4.2206128029e-01 -1.2013116676e-01 -3.8786838497e-01 4.2206128095e-01 -1.2013116588e-01 -3.8786838606e-01
9 6.3636363636e-01 3.8786838601e-01 -3.2225270035e-01 -1.2013116452e-01 3.8786838606e-01 -3.2225270128e-01 -1.2013116588e-01
10 7.2727272727e-01 3.2225270138e-01 -4.2206128196e-01 2.3053001725e-01 3.2225270128e-01 -4.2206128095e-01 2.3053001915e-01
11 8.1818181818e-01 2.3053001839e-01 -3.8786838569e-01 4.2206128036e-01 2.3053001915e-01 -3.8786838606e-01 4.2206128095e-01
12 9.0909090909e-01 1.2013116693e-01 -2.3053001912e-01 3.2225270306e-01 1.2013116588e-01 -2.3053001915e-01 3.2225270128e-01
13 1.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00

View File

@ -1,103 +1,103 @@
x,Vector 1,Vector 2,Vector 3 x,Vector 1,Vector 2,Vector 3,Analytic 1,Analytic 2,Analytic 3
0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00 0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00
9.9009900990e-03,4.3763580486e-03,-8.7484808732e-03,-1.3112140868e-02 9.9009900990e-03,4.3763580486e-03,-8.7484808732e-03,-1.3112140868e-02,4.3763573469e-03,-8.7484808507e-03,-1.3112140764e-02
1.9801980198e-02,8.7484805374e-03,-1.7463118426e-02,-2.6110190173e-02 1.9801980198e-02,8.7484805374e-03,-1.7463118426e-02,-2.6110190173e-02,8.7484808507e-03,-1.7463115529e-02,-2.6110188805e-02
2.9702970297e-02,1.3112137258e-02,-2.6110188342e-02,-3.8881042300e-02 2.9702970297e-02,1.3112137258e-02,-2.6110188342e-02,-3.8881042300e-02,1.3112140764e-02,-2.6110188805e-02,-3.8881044154e-02
3.9603960396e-02,1.7463113948e-02,-3.4656251014e-02,-5.1313582739e-02 3.9603960396e-02,1.7463113948e-02,-3.4656251014e-02,-5.1313582739e-02,1.7463115529e-02,-3.4656246833e-02,-5.1313583715e-02
4.9504950495e-02,2.1797194330e-02,-4.3068225457e-02,-6.3299631766e-02 4.9504950495e-02,2.1797194330e-02,-4.3068225457e-02,-6.3299631766e-02,2.1797195856e-02,-4.3068226575e-02,-6.3299628182e-02
5.9405940594e-02,2.6110192331e-02,-5.1313581763e-02,-7.4734880361e-02 5.9405940594e-02,2.6110192331e-02,-5.1313581763e-02,-7.4734880361e-02,2.6110188805e-02,-5.1313583715e-02,-7.4734883337e-02
6.9306930693e-02,3.0397918929e-02,-5.9360418816e-02,-8.5519850123e-02 6.9306930693e-02,3.0397918929e-02,-5.9360418816e-02,-8.5519850123e-02,3.0397921832e-02,-5.9360418568e-02,-8.5519847548e-02
7.9207920792e-02,3.4656246898e-02,-6.7177598362e-02,-9.5560679417e-02 7.9207920792e-02,3.4656246898e-02,-6.7177598362e-02,-9.5560679417e-02,3.4656246833e-02,-6.7177599493e-02,-9.5560677562e-02
8.9108910891e-02,3.8881042315e-02,-7.4734886241e-02,-1.0477000717e-01 8.9108910891e-02,3.8881042315e-02,-7.4734886241e-02,-1.0477000717e-01,3.8881044154e-02,-7.4734883337e-02,-1.0477000506e-01
9.9009900990e-02,4.3068230096e-02,-8.2003031501e-02,-1.1306769719e-01 9.9009900990e-02,4.3068230096e-02,-8.2003031501e-02,-1.1306769719e-01,4.3068226575e-02,-8.2003032435e-02,-1.1306769690e-01
1.0891089109e-01,4.7213744503e-02,-8.8953927224e-02,-1.2038155127e-01 1.0891089109e-01,4.7213744503e-02,-8.8953927224e-02,-1.2038155127e-01,4.7213743269e-02,-8.8953927731e-02,-1.2038155232e-01
1.1881188119e-01,5.1313588425e-02,-9.5560676214e-02,-1.2664793098e-01 1.1881188119e-01,5.1313588425e-02,-9.5560676214e-02,-1.2664793098e-01,5.1313583715e-02,-9.5560677562e-02,-1.2664793125e-01
1.2871287129e-01,5.5363780001e-02,-1.0179771917e-01,-1.3181231002e-01 1.2871287129e-01,5.5363780001e-02,-1.0179771917e-01,-1.3181231002e-01,5.5363781583e-02,-1.0179772170e-01,-1.3181230802e-01
1.3861386139e-01,5.9360419789e-02,-1.0764092918e-01,-1.3582974462e-01 1.3861386139e-01,5.9360419789e-02,-1.0764092918e-01,-1.3582974462e-01,5.9360418568e-02,-1.0764093022e-01,-1.3582974582e-01
1.4851485149e-01,6.3299627984e-02,-1.1306769819e-01,-1.3866528556e-01 1.4851485149e-01,6.3299627984e-02,-1.1306769819e-01,-1.3866528556e-01,6.3299628182e-02,-1.1306769690e-01,-1.3866528771e-01
1.5841584158e-01,6.7177601217e-02,-1.1805702763e-01,-1.4029426114e-01 1.5841584158e-01,6.7177601217e-02,-1.1805702763e-01,-1.4029426114e-01,6.7177599493e-02,-1.1805702662e-01,-1.4029426076e-01
1.6831683168e-01,7.0990579025e-02,-1.2258961789e-01,-1.4070249027e-01 1.6831683168e-01,7.0990579025e-02,-1.2258961789e-01,-1.4070249027e-01,7.0990580816e-02,-1.2258961664e-01,-1.4070249079e-01
1.7821782178e-01,7.4734880844e-02,-1.2664793546e-01,-1.3988642874e-01 1.7821782178e-01,7.4734880844e-02,-1.2664793546e-01,-1.3988642874e-01,7.4734883337e-02,-1.2664793125e-01,-1.3988642566e-01
1.8811881188e-01,7.8406882603e-02,-1.3021626991e-01,-1.3785316434e-01 1.8811881188e-01,7.8406882603e-02,-1.3021626991e-01,-1.3785316434e-01,7.8406884685e-02,-1.3021626962e-01,-1.3785316621e-01
1.9801980198e-01,8.2003032834e-02,-1.3328082864e-01,-1.3462040439e-01 1.9801980198e-01,8.2003032834e-02,-1.3328082864e-01,-1.3462040439e-01,8.2003032435e-02,-1.3328082653e-01,-1.3462040445e-01
2.0792079208e-01,8.5519846919e-02,-1.3582974378e-01,-1.3021627110e-01 2.0792079208e-01,8.5519846919e-02,-1.3582974378e-01,-1.3021627110e-01,8.5519847548e-02,-1.3582974582e-01,-1.3021626962e-01
2.1782178218e-01,8.8953926852e-02,-1.3785316224e-01,-1.2467908375e-01 2.1782178218e-01,8.8953926852e-02,-1.3785316224e-01,-1.2467908375e-01,8.8953927731e-02,-1.3785316621e-01,-1.2467908343e-01
2.2772277228e-01,9.2301946409e-02,-1.3934326062e-01,-1.1805702523e-01 2.2772277228e-01,9.2301946409e-02,-1.3934326062e-01,-1.1805702523e-01,9.2301950735e-02,-1.3934325949e-01,-1.1805702662e-01
2.3762376238e-01,9.5560676953e-02,-1.4029425672e-01,-1.1040771966e-01 2.3762376238e-01,9.5560676953e-02,-1.4029425672e-01,-1.1040771966e-01,9.5560677562e-02,-1.4029426076e-01,-1.1040771973e-01
2.4752475248e-01,9.8726957572e-02,-1.4070249295e-01,-1.0179772068e-01 2.4752475248e-01,9.8726957572e-02,-1.4070249295e-01,-1.0179772068e-01,9.8726955606e-02,-1.4070249079e-01,-1.0179772170e-01
2.5742574257e-01,1.0179772036e-01,-1.4056637044e-01,-9.2301949636e-02 2.5742574257e-01,1.0179772036e-01,-1.4056637044e-01,-9.2301949636e-02,1.0179772170e-01,-1.4056637021e-01,-9.2301950735e-02
2.6732673267e-01,1.0477000527e-01,-1.3988642578e-01,-8.2003032107e-02 2.6732673267e-01,1.0477000527e-01,-1.3988642578e-01,-8.2003032107e-02,1.0477000506e-01,-1.3988642566e-01,-8.2003032435e-02
2.7722772277e-01,1.0764093290e-01,-1.3866528965e-01,-7.0990578930e-02 2.7722772277e-01,1.0764093290e-01,-1.3866528965e-01,-7.0990578930e-02,1.0764093022e-01,-1.3866528771e-01,-7.0990580816e-02
2.8712871287e-01,1.1040771987e-01,-1.3690767831e-01,-5.9360423847e-02 2.8712871287e-01,1.1040771987e-01,-1.3690767831e-01,-5.9360423847e-02,1.1040771973e-01,-1.3690768069e-01,-5.9360418568e-02
2.9702970297e-01,1.1306770152e-01,-1.3462040609e-01,-4.7213742425e-02 2.9702970297e-01,1.1306770152e-01,-1.3462040609e-01,-4.7213742425e-02,1.1306769690e-01,-1.3462040445e-01,-4.7213743269e-02
3.0693069307e-01,1.1561828862e-01,-1.3181230529e-01,-3.4656247048e-02 3.0693069307e-01,1.1561828862e-01,-1.3181230529e-01,-3.4656247048e-02,1.1561828837e-01,-1.3181230802e-01,-3.4656246833e-02
3.1683168317e-01,1.1805702504e-01,-1.2849425366e-01,-2.1797195258e-02 3.1683168317e-01,1.1805702504e-01,-1.2849425366e-01,-2.1797195258e-02,1.1805702662e-01,-1.2849425538e-01,-2.1797195856e-02
3.2673267327e-01,1.2038155014e-01,-1.2467908448e-01,-8.7484830929e-03 3.2673267327e-01,1.2038155014e-01,-1.2467908448e-01,-8.7484830929e-03,1.2038155232e-01,-1.2467908343e-01,-8.7484808507e-03
3.3663366337e-01,1.2258961573e-01,-1.2038155323e-01,4.3763575797e-03 3.3663366337e-01,1.2258961573e-01,-1.2038155323e-01,4.3763575797e-03,1.2258961664e-01,-1.2038155232e-01,4.3763573469e-03
3.4653465347e-01,1.2467908410e-01,-1.1561829169e-01,1.7463115474e-02 3.4653465347e-01,1.2467908410e-01,-1.1561829169e-01,1.7463115474e-02,1.2467908343e-01,-1.1561828837e-01,1.7463115529e-02
3.5643564356e-01,1.2664793338e-01,-1.1040771926e-01,3.0397924158e-02 3.5643564356e-01,1.2664793338e-01,-1.1040771926e-01,3.0397924158e-02,1.2664793125e-01,-1.1040771973e-01,3.0397921832e-02
3.6633663366e-01,1.2849425248e-01,-1.0477000407e-01,4.3068226361e-02 3.6633663366e-01,1.2849425248e-01,-1.0477000407e-01,4.3068226361e-02,1.2849425538e-01,-1.0477000506e-01,4.3068226575e-02
3.7623762376e-01,1.3021626897e-01,-9.8726953501e-02,5.5363781149e-02 3.7623762376e-01,1.3021626897e-01,-9.8726953501e-02,5.5363781149e-02,1.3021626962e-01,-9.8726955606e-02,5.5363781583e-02
3.8613861386e-01,1.3181230641e-01,-9.2301949069e-02,6.7177599971e-02 3.8613861386e-01,1.3181230641e-01,-9.2301949069e-02,6.7177599971e-02,1.3181230802e-01,-9.2301950735e-02,6.7177599493e-02
3.9603960396e-01,1.3328082420e-01,-8.5519846476e-02,7.8406881225e-02 3.9603960396e-01,1.3328082420e-01,-8.5519846476e-02,7.8406881225e-02,1.3328082653e-01,-8.5519847548e-02,7.8406884685e-02
4.0594059406e-01,1.3462040441e-01,-7.8406886916e-02,8.8953928507e-02 4.0594059406e-01,1.3462040441e-01,-7.8406886916e-02,8.8953928507e-02,1.3462040445e-01,-7.8406884685e-02,8.8953927731e-02
4.1584158416e-01,1.3582974237e-01,-7.0990582377e-02,9.8726952665e-02 4.1584158416e-01,1.3582974237e-01,-7.0990582377e-02,9.8726952665e-02,1.3582974582e-01,-7.0990580816e-02,9.8726955606e-02
4.2574257426e-01,1.3690768207e-01,-6.3299628825e-02,1.0764092847e-01 4.2574257426e-01,1.3690768207e-01,-6.3299628825e-02,1.0764092847e-01,1.3690768069e-01,-6.3299628182e-02,1.0764093022e-01
4.3564356436e-01,1.3785316922e-01,-5.5363784270e-02,1.1561828790e-01 4.3564356436e-01,1.3785316922e-01,-5.5363784270e-02,1.1561828790e-01,1.3785316621e-01,-5.5363781583e-02,1.1561828837e-01
4.4554455446e-01,1.3866529183e-01,-4.7213741970e-02,1.2258961490e-01 4.4554455446e-01,1.3866529183e-01,-4.7213741970e-02,1.2258961490e-01,1.3866528771e-01,-4.7213743269e-02,1.2258961664e-01
4.5544554455e-01,1.3934325896e-01,-3.8881046285e-02,1.2849425510e-01 4.5544554455e-01,1.3934325896e-01,-3.8881046285e-02,1.2849425510e-01,1.3934325949e-01,-3.8881044154e-02,1.2849425538e-01
4.6534653465e-01,1.3988642934e-01,-3.0397919107e-02,1.3328083063e-01 4.6534653465e-01,1.3988642934e-01,-3.0397919107e-02,1.3328083063e-01,1.3988642566e-01,-3.0397921832e-02,1.3328082653e-01
4.7524752475e-01,1.4029425867e-01,-2.1797194223e-02,1.3690767978e-01 4.7524752475e-01,1.4029425867e-01,-2.1797194223e-02,1.3690767978e-01,1.4029426076e-01,-2.1797195856e-02,1.3690768069e-01
4.8514851485e-01,1.4056637371e-01,-1.3112142627e-02,1.3934326030e-01 4.8514851485e-01,1.4056637371e-01,-1.3112142627e-02,1.3934326030e-01,1.4056637021e-01,-1.3112140764e-02,1.3934325949e-01
4.9504950495e-01,1.4070249059e-01,-4.3763545931e-03,1.4056637087e-01 4.9504950495e-01,1.4070249059e-01,-4.3763545931e-03,1.4056637087e-01,1.4070249079e-01,-4.3763573469e-03,1.4056637021e-01
5.0495049505e-01,1.4070249237e-01,4.3763553240e-03,1.4056636855e-01 5.0495049505e-01,1.4070249237e-01,4.3763553240e-03,1.4056636855e-01,1.4070249079e-01,4.3763573469e-03,1.4056637021e-01
5.1485148515e-01,1.4056636701e-01,1.3112141424e-02,1.3934326274e-01 5.1485148515e-01,1.4056636701e-01,1.3112141424e-02,1.3934326274e-01,1.4056637021e-01,1.3112140764e-02,1.3934325949e-01
5.2475247525e-01,1.4029426479e-01,2.1797196040e-02,1.3690767734e-01 5.2475247525e-01,1.4029426479e-01,2.1797196040e-02,1.3690767734e-01,1.4029426076e-01,2.1797195856e-02,1.3690768069e-01
5.3465346535e-01,1.3988642418e-01,3.0397922181e-02,1.3328082645e-01 5.3465346535e-01,1.3988642418e-01,3.0397922181e-02,1.3328082645e-01,1.3988642566e-01,3.0397921832e-02,1.3328082653e-01
5.4455445545e-01,1.3934325818e-01,3.8881045170e-02,1.2849425588e-01 5.4455445545e-01,1.3934325818e-01,3.8881045170e-02,1.2849425588e-01,1.3934325949e-01,3.8881044154e-02,1.2849425538e-01
5.5445544554e-01,1.3866528548e-01,4.7213739894e-02,1.2258961529e-01 5.5445544554e-01,1.3866528548e-01,4.7213739894e-02,1.2258961529e-01,1.3866528771e-01,4.7213743269e-02,1.2258961664e-01
5.6435643564e-01,1.3785316347e-01,5.5363782200e-02,1.1561828838e-01 5.6435643564e-01,1.3785316347e-01,5.5363782200e-02,1.1561828838e-01,1.3785316621e-01,5.5363781583e-02,1.1561828837e-01
5.7425742574e-01,1.3690767808e-01,6.3299625555e-02,1.0764093012e-01 5.7425742574e-01,1.3690767808e-01,6.3299625555e-02,1.0764093012e-01,1.3690768069e-01,6.3299628182e-02,1.0764093022e-01
5.8415841584e-01,1.3582975080e-01,7.0990579118e-02,9.8726956974e-02 5.8415841584e-01,1.3582975080e-01,7.0990579118e-02,9.8726956974e-02,1.3582974582e-01,7.0990580816e-02,9.8726955606e-02
5.9405940594e-01,1.3462040473e-01,7.8406883764e-02,8.8953931156e-02 5.9405940594e-01,1.3462040473e-01,7.8406883764e-02,8.8953931156e-02,1.3462040445e-01,7.8406884685e-02,8.8953927731e-02
6.0396039604e-01,1.3328082628e-01,8.5519847508e-02,7.8406882521e-02 6.0396039604e-01,1.3328082628e-01,8.5519847508e-02,7.8406882521e-02,1.3328082653e-01,8.5519847548e-02,7.8406884685e-02
6.1386138614e-01,1.3181231043e-01,9.2301955750e-02,6.7177597738e-02 6.1386138614e-01,1.3181231043e-01,9.2301955750e-02,6.7177597738e-02,1.3181230802e-01,9.2301950735e-02,6.7177599493e-02
6.2376237624e-01,1.3021627254e-01,9.8726959125e-02,5.5363781584e-02 6.2376237624e-01,1.3021627254e-01,9.8726959125e-02,5.5363781584e-02,1.3021626962e-01,9.8726955606e-02,5.5363781583e-02
6.3366336634e-01,1.2849425843e-01,1.0477000685e-01,4.3068225262e-02 6.3366336634e-01,1.2849425843e-01,1.0477000685e-01,4.3068225262e-02,1.2849425538e-01,1.0477000506e-01,4.3068226575e-02
6.4356435644e-01,1.2664792968e-01,1.1040772008e-01,3.0397923775e-02 6.4356435644e-01,1.2664792968e-01,1.1040772008e-01,3.0397923775e-02,1.2664793125e-01,1.1040771973e-01,3.0397921832e-02
6.5346534653e-01,1.2467908233e-01,1.1561828667e-01,1.7463112100e-02 6.5346534653e-01,1.2467908233e-01,1.1561828667e-01,1.7463112100e-02,1.2467908343e-01,1.1561828837e-01,1.7463115529e-02
6.6336633663e-01,1.2258961618e-01,1.2038154892e-01,4.3763558959e-03 6.6336633663e-01,1.2258961618e-01,1.2038154892e-01,4.3763558959e-03,1.2258961664e-01,1.2038155232e-01,4.3763573469e-03
6.7326732673e-01,1.2038155509e-01,1.2467908434e-01,-8.7484791158e-03 6.7326732673e-01,1.2038155509e-01,1.2467908434e-01,-8.7484791158e-03,1.2038155232e-01,1.2467908343e-01,-8.7484808507e-03
6.8316831683e-01,1.1805702847e-01,1.2849425619e-01,-2.1797195967e-02 6.8316831683e-01,1.1805702847e-01,1.2849425619e-01,-2.1797195967e-02,1.1805702662e-01,1.2849425538e-01,-2.1797195856e-02
6.9306930693e-01,1.1561828622e-01,1.3181230822e-01,-3.4656246425e-02 6.9306930693e-01,1.1561828622e-01,1.3181230822e-01,-3.4656246425e-02,1.1561828837e-01,1.3181230802e-01,-3.4656246833e-02
7.0297029703e-01,1.1306768997e-01,1.3462040633e-01,-4.7213742058e-02 7.0297029703e-01,1.1306768997e-01,1.3462040633e-01,-4.7213742058e-02,1.1306769690e-01,1.3462040445e-01,-4.7213743269e-02
7.1287128713e-01,1.1040771799e-01,1.3690767691e-01,-5.9360418526e-02 7.1287128713e-01,1.1040771799e-01,1.3690767691e-01,-5.9360418526e-02,1.1040771973e-01,1.3690768069e-01,-5.9360418568e-02
7.2277227723e-01,1.0764092776e-01,1.3866528979e-01,-7.0990581227e-02 7.2277227723e-01,1.0764092776e-01,1.3866528979e-01,-7.0990581227e-02,1.0764093022e-01,1.3866528771e-01,-7.0990580816e-02
7.3267326733e-01,1.0477000620e-01,1.3988642119e-01,-8.2003033815e-02 7.3267326733e-01,1.0477000620e-01,1.3988642119e-01,-8.2003033815e-02,1.0477000506e-01,1.3988642566e-01,-8.2003032435e-02
7.4257425743e-01,1.0179772152e-01,1.4056636623e-01,-9.2301952893e-02 7.4257425743e-01,1.0179772152e-01,1.4056636623e-01,-9.2301952893e-02,1.0179772170e-01,1.4056637021e-01,-9.2301950735e-02
7.5247524752e-01,9.8726952848e-02,1.4070249392e-01,-1.0179771955e-01 7.5247524752e-01,9.8726952848e-02,1.4070249392e-01,-1.0179771955e-01,9.8726955606e-02,1.4070249079e-01,-1.0179772170e-01
7.6237623762e-01,9.5560678408e-02,1.4029425948e-01,-1.1040772236e-01 7.6237623762e-01,9.5560678408e-02,1.4029425948e-01,-1.1040772236e-01,9.5560677562e-02,1.4029426076e-01,-1.1040771973e-01
7.7227722772e-01,9.2301954838e-02,1.3934326416e-01,-1.1805702951e-01 7.7227722772e-01,9.2301954838e-02,1.3934326416e-01,-1.1805702951e-01,9.2301950735e-02,1.3934325949e-01,-1.1805702662e-01
7.8217821782e-01,8.8953928903e-02,1.3785316849e-01,-1.2467908256e-01 7.8217821782e-01,8.8953928903e-02,1.3785316849e-01,-1.2467908256e-01,8.8953927731e-02,1.3785316621e-01,-1.2467908343e-01
7.9207920792e-01,8.5519848124e-02,1.3582974727e-01,-1.3021626851e-01 7.9207920792e-01,8.5519848124e-02,1.3582974727e-01,-1.3021626851e-01,8.5519847548e-02,1.3582974582e-01,-1.3021626962e-01
8.0198019802e-01,8.2003030909e-02,1.3328082828e-01,-1.3462040327e-01 8.0198019802e-01,8.2003030909e-02,1.3328082828e-01,-1.3462040327e-01,8.2003032435e-02,1.3328082653e-01,-1.3462040445e-01
8.1188118812e-01,7.8406885186e-02,1.3021626587e-01,-1.3785316474e-01 8.1188118812e-01,7.8406885186e-02,1.3021626587e-01,-1.3785316474e-01,7.8406884685e-02,1.3021626962e-01,-1.3785316621e-01
8.2178217822e-01,7.4734885540e-02,1.2664793089e-01,-1.3988642777e-01 8.2178217822e-01,7.4734885540e-02,1.2664793089e-01,-1.3988642777e-01,7.4734883337e-02,1.2664793125e-01,-1.3988642566e-01
8.3168316832e-01,7.0990582072e-02,1.2258961409e-01,-1.4070248742e-01 8.3168316832e-01,7.0990582072e-02,1.2258961409e-01,-1.4070248742e-01,7.0990580816e-02,1.2258961664e-01,-1.4070249079e-01
8.4158415842e-01,6.7177598843e-02,1.1805702585e-01,-1.4029426160e-01 8.4158415842e-01,6.7177598843e-02,1.1805702585e-01,-1.4029426160e-01,6.7177599493e-02,1.1805702662e-01,-1.4029426076e-01
8.5148514851e-01,6.3299627125e-02,1.1306769708e-01,-1.3866528902e-01 8.5148514851e-01,6.3299627125e-02,1.1306769708e-01,-1.3866528902e-01,6.3299628182e-02,1.1306769690e-01,-1.3866528771e-01
8.6138613861e-01,5.9360415245e-02,1.0764093150e-01,-1.3582974369e-01 8.6138613861e-01,5.9360415245e-02,1.0764093150e-01,-1.3582974369e-01,5.9360418568e-02,1.0764093022e-01,-1.3582974582e-01
8.7128712871e-01,5.5363784218e-02,1.0179772269e-01,-1.3181231038e-01 8.7128712871e-01,5.5363784218e-02,1.0179772269e-01,-1.3181231038e-01,5.5363781583e-02,1.0179772170e-01,-1.3181230802e-01
8.8118811881e-01,5.1313579361e-02,9.5560678437e-02,-1.2664793139e-01 8.8118811881e-01,5.1313579361e-02,9.5560678437e-02,-1.2664793139e-01,5.1313583715e-02,9.5560677562e-02,-1.2664793125e-01
8.9108910891e-01,4.7213741091e-02,8.8953928103e-02,-1.2038155214e-01 8.9108910891e-01,4.7213741091e-02,8.8953928103e-02,-1.2038155214e-01,4.7213743269e-02,8.8953927731e-02,-1.2038155232e-01
9.0099009901e-01,4.3068225595e-02,8.2003031564e-02,-1.1306769867e-01 9.0099009901e-01,4.3068225595e-02,8.2003031564e-02,-1.1306769867e-01,4.3068226575e-02,8.2003032435e-02,-1.1306769690e-01
9.1089108911e-01,3.8881045999e-02,7.4734883659e-02,-1.0477000196e-01 9.1089108911e-01,3.8881045999e-02,7.4734883659e-02,-1.0477000196e-01,3.8881044154e-02,7.4734883337e-02,-1.0477000506e-01
9.2079207921e-01,3.4656245355e-02,6.7177597583e-02,-9.5560676903e-02 9.2079207921e-01,3.4656245355e-02,6.7177597583e-02,-9.5560676903e-02,3.4656246833e-02,6.7177599493e-02,-9.5560677562e-02
9.3069306931e-01,3.0397926577e-02,5.9360420731e-02,-8.5519850964e-02 9.3069306931e-01,3.0397926577e-02,5.9360420731e-02,-8.5519850964e-02,3.0397921832e-02,5.9360418568e-02,-8.5519847548e-02
9.4059405941e-01,2.6110186824e-02,5.1313584318e-02,-7.4734880388e-02 9.4059405941e-01,2.6110186824e-02,5.1313584318e-02,-7.4734880388e-02,2.6110188805e-02,5.1313583715e-02,-7.4734883337e-02
9.5049504950e-01,2.1797196485e-02,4.3068226072e-02,-6.3299628759e-02 9.5049504950e-01,2.1797196485e-02,4.3068226072e-02,-6.3299628759e-02,2.1797195856e-02,4.3068226575e-02,-6.3299628182e-02
9.6039603960e-01,1.7463116664e-02,3.4656247119e-02,-5.1313584252e-02 9.6039603960e-01,1.7463116664e-02,3.4656247119e-02,-5.1313584252e-02,1.7463115529e-02,3.4656246833e-02,-5.1313583715e-02
9.7029702970e-01,1.3112143651e-02,2.6110184365e-02,-3.8881045879e-02 9.7029702970e-01,1.3112143651e-02,2.6110184365e-02,-3.8881045879e-02,1.3112140764e-02,2.6110188805e-02,-3.8881044154e-02
9.8019801980e-01,8.7484791764e-03,1.7463117510e-02,-2.6110190428e-02 9.8019801980e-01,8.7484791764e-03,1.7463117510e-02,-2.6110190428e-02,8.7484808507e-03,1.7463115529e-02,-2.6110188805e-02
9.9009900990e-01,4.3763588619e-03,8.7484790494e-03,-1.3112138188e-02 9.9009900990e-01,4.3763588619e-03,8.7484790494e-03,-1.3112138188e-02,4.3763573469e-03,8.7484808507e-03,-1.3112140764e-02
1.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00 1.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00

1 x Vector 1 Vector 2 Vector 3 Analytic 1 Analytic 2 Analytic 3
2 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00
3 9.9009900990e-03 4.3763580486e-03 -8.7484808732e-03 -1.3112140868e-02 4.3763573469e-03 -8.7484808507e-03 -1.3112140764e-02
4 1.9801980198e-02 8.7484805374e-03 -1.7463118426e-02 -2.6110190173e-02 8.7484808507e-03 -1.7463115529e-02 -2.6110188805e-02
5 2.9702970297e-02 1.3112137258e-02 -2.6110188342e-02 -3.8881042300e-02 1.3112140764e-02 -2.6110188805e-02 -3.8881044154e-02
6 3.9603960396e-02 1.7463113948e-02 -3.4656251014e-02 -5.1313582739e-02 1.7463115529e-02 -3.4656246833e-02 -5.1313583715e-02
7 4.9504950495e-02 2.1797194330e-02 -4.3068225457e-02 -6.3299631766e-02 2.1797195856e-02 -4.3068226575e-02 -6.3299628182e-02
8 5.9405940594e-02 2.6110192331e-02 -5.1313581763e-02 -7.4734880361e-02 2.6110188805e-02 -5.1313583715e-02 -7.4734883337e-02
9 6.9306930693e-02 3.0397918929e-02 -5.9360418816e-02 -8.5519850123e-02 3.0397921832e-02 -5.9360418568e-02 -8.5519847548e-02
10 7.9207920792e-02 3.4656246898e-02 -6.7177598362e-02 -9.5560679417e-02 3.4656246833e-02 -6.7177599493e-02 -9.5560677562e-02
11 8.9108910891e-02 3.8881042315e-02 -7.4734886241e-02 -1.0477000717e-01 3.8881044154e-02 -7.4734883337e-02 -1.0477000506e-01
12 9.9009900990e-02 4.3068230096e-02 -8.2003031501e-02 -1.1306769719e-01 4.3068226575e-02 -8.2003032435e-02 -1.1306769690e-01
13 1.0891089109e-01 4.7213744503e-02 -8.8953927224e-02 -1.2038155127e-01 4.7213743269e-02 -8.8953927731e-02 -1.2038155232e-01
14 1.1881188119e-01 5.1313588425e-02 -9.5560676214e-02 -1.2664793098e-01 5.1313583715e-02 -9.5560677562e-02 -1.2664793125e-01
15 1.2871287129e-01 5.5363780001e-02 -1.0179771917e-01 -1.3181231002e-01 5.5363781583e-02 -1.0179772170e-01 -1.3181230802e-01
16 1.3861386139e-01 5.9360419789e-02 -1.0764092918e-01 -1.3582974462e-01 5.9360418568e-02 -1.0764093022e-01 -1.3582974582e-01
17 1.4851485149e-01 6.3299627984e-02 -1.1306769819e-01 -1.3866528556e-01 6.3299628182e-02 -1.1306769690e-01 -1.3866528771e-01
18 1.5841584158e-01 6.7177601217e-02 -1.1805702763e-01 -1.4029426114e-01 6.7177599493e-02 -1.1805702662e-01 -1.4029426076e-01
19 1.6831683168e-01 7.0990579025e-02 -1.2258961789e-01 -1.4070249027e-01 7.0990580816e-02 -1.2258961664e-01 -1.4070249079e-01
20 1.7821782178e-01 7.4734880844e-02 -1.2664793546e-01 -1.3988642874e-01 7.4734883337e-02 -1.2664793125e-01 -1.3988642566e-01
21 1.8811881188e-01 7.8406882603e-02 -1.3021626991e-01 -1.3785316434e-01 7.8406884685e-02 -1.3021626962e-01 -1.3785316621e-01
22 1.9801980198e-01 8.2003032834e-02 -1.3328082864e-01 -1.3462040439e-01 8.2003032435e-02 -1.3328082653e-01 -1.3462040445e-01
23 2.0792079208e-01 8.5519846919e-02 -1.3582974378e-01 -1.3021627110e-01 8.5519847548e-02 -1.3582974582e-01 -1.3021626962e-01
24 2.1782178218e-01 8.8953926852e-02 -1.3785316224e-01 -1.2467908375e-01 8.8953927731e-02 -1.3785316621e-01 -1.2467908343e-01
25 2.2772277228e-01 9.2301946409e-02 -1.3934326062e-01 -1.1805702523e-01 9.2301950735e-02 -1.3934325949e-01 -1.1805702662e-01
26 2.3762376238e-01 9.5560676953e-02 -1.4029425672e-01 -1.1040771966e-01 9.5560677562e-02 -1.4029426076e-01 -1.1040771973e-01
27 2.4752475248e-01 9.8726957572e-02 -1.4070249295e-01 -1.0179772068e-01 9.8726955606e-02 -1.4070249079e-01 -1.0179772170e-01
28 2.5742574257e-01 1.0179772036e-01 -1.4056637044e-01 -9.2301949636e-02 1.0179772170e-01 -1.4056637021e-01 -9.2301950735e-02
29 2.6732673267e-01 1.0477000527e-01 -1.3988642578e-01 -8.2003032107e-02 1.0477000506e-01 -1.3988642566e-01 -8.2003032435e-02
30 2.7722772277e-01 1.0764093290e-01 -1.3866528965e-01 -7.0990578930e-02 1.0764093022e-01 -1.3866528771e-01 -7.0990580816e-02
31 2.8712871287e-01 1.1040771987e-01 -1.3690767831e-01 -5.9360423847e-02 1.1040771973e-01 -1.3690768069e-01 -5.9360418568e-02
32 2.9702970297e-01 1.1306770152e-01 -1.3462040609e-01 -4.7213742425e-02 1.1306769690e-01 -1.3462040445e-01 -4.7213743269e-02
33 3.0693069307e-01 1.1561828862e-01 -1.3181230529e-01 -3.4656247048e-02 1.1561828837e-01 -1.3181230802e-01 -3.4656246833e-02
34 3.1683168317e-01 1.1805702504e-01 -1.2849425366e-01 -2.1797195258e-02 1.1805702662e-01 -1.2849425538e-01 -2.1797195856e-02
35 3.2673267327e-01 1.2038155014e-01 -1.2467908448e-01 -8.7484830929e-03 1.2038155232e-01 -1.2467908343e-01 -8.7484808507e-03
36 3.3663366337e-01 1.2258961573e-01 -1.2038155323e-01 4.3763575797e-03 1.2258961664e-01 -1.2038155232e-01 4.3763573469e-03
37 3.4653465347e-01 1.2467908410e-01 -1.1561829169e-01 1.7463115474e-02 1.2467908343e-01 -1.1561828837e-01 1.7463115529e-02
38 3.5643564356e-01 1.2664793338e-01 -1.1040771926e-01 3.0397924158e-02 1.2664793125e-01 -1.1040771973e-01 3.0397921832e-02
39 3.6633663366e-01 1.2849425248e-01 -1.0477000407e-01 4.3068226361e-02 1.2849425538e-01 -1.0477000506e-01 4.3068226575e-02
40 3.7623762376e-01 1.3021626897e-01 -9.8726953501e-02 5.5363781149e-02 1.3021626962e-01 -9.8726955606e-02 5.5363781583e-02
41 3.8613861386e-01 1.3181230641e-01 -9.2301949069e-02 6.7177599971e-02 1.3181230802e-01 -9.2301950735e-02 6.7177599493e-02
42 3.9603960396e-01 1.3328082420e-01 -8.5519846476e-02 7.8406881225e-02 1.3328082653e-01 -8.5519847548e-02 7.8406884685e-02
43 4.0594059406e-01 1.3462040441e-01 -7.8406886916e-02 8.8953928507e-02 1.3462040445e-01 -7.8406884685e-02 8.8953927731e-02
44 4.1584158416e-01 1.3582974237e-01 -7.0990582377e-02 9.8726952665e-02 1.3582974582e-01 -7.0990580816e-02 9.8726955606e-02
45 4.2574257426e-01 1.3690768207e-01 -6.3299628825e-02 1.0764092847e-01 1.3690768069e-01 -6.3299628182e-02 1.0764093022e-01
46 4.3564356436e-01 1.3785316922e-01 -5.5363784270e-02 1.1561828790e-01 1.3785316621e-01 -5.5363781583e-02 1.1561828837e-01
47 4.4554455446e-01 1.3866529183e-01 -4.7213741970e-02 1.2258961490e-01 1.3866528771e-01 -4.7213743269e-02 1.2258961664e-01
48 4.5544554455e-01 1.3934325896e-01 -3.8881046285e-02 1.2849425510e-01 1.3934325949e-01 -3.8881044154e-02 1.2849425538e-01
49 4.6534653465e-01 1.3988642934e-01 -3.0397919107e-02 1.3328083063e-01 1.3988642566e-01 -3.0397921832e-02 1.3328082653e-01
50 4.7524752475e-01 1.4029425867e-01 -2.1797194223e-02 1.3690767978e-01 1.4029426076e-01 -2.1797195856e-02 1.3690768069e-01
51 4.8514851485e-01 1.4056637371e-01 -1.3112142627e-02 1.3934326030e-01 1.4056637021e-01 -1.3112140764e-02 1.3934325949e-01
52 4.9504950495e-01 1.4070249059e-01 -4.3763545931e-03 1.4056637087e-01 1.4070249079e-01 -4.3763573469e-03 1.4056637021e-01
53 5.0495049505e-01 1.4070249237e-01 4.3763553240e-03 1.4056636855e-01 1.4070249079e-01 4.3763573469e-03 1.4056637021e-01
54 5.1485148515e-01 1.4056636701e-01 1.3112141424e-02 1.3934326274e-01 1.4056637021e-01 1.3112140764e-02 1.3934325949e-01
55 5.2475247525e-01 1.4029426479e-01 2.1797196040e-02 1.3690767734e-01 1.4029426076e-01 2.1797195856e-02 1.3690768069e-01
56 5.3465346535e-01 1.3988642418e-01 3.0397922181e-02 1.3328082645e-01 1.3988642566e-01 3.0397921832e-02 1.3328082653e-01
57 5.4455445545e-01 1.3934325818e-01 3.8881045170e-02 1.2849425588e-01 1.3934325949e-01 3.8881044154e-02 1.2849425538e-01
58 5.5445544554e-01 1.3866528548e-01 4.7213739894e-02 1.2258961529e-01 1.3866528771e-01 4.7213743269e-02 1.2258961664e-01
59 5.6435643564e-01 1.3785316347e-01 5.5363782200e-02 1.1561828838e-01 1.3785316621e-01 5.5363781583e-02 1.1561828837e-01
60 5.7425742574e-01 1.3690767808e-01 6.3299625555e-02 1.0764093012e-01 1.3690768069e-01 6.3299628182e-02 1.0764093022e-01
61 5.8415841584e-01 1.3582975080e-01 7.0990579118e-02 9.8726956974e-02 1.3582974582e-01 7.0990580816e-02 9.8726955606e-02
62 5.9405940594e-01 1.3462040473e-01 7.8406883764e-02 8.8953931156e-02 1.3462040445e-01 7.8406884685e-02 8.8953927731e-02
63 6.0396039604e-01 1.3328082628e-01 8.5519847508e-02 7.8406882521e-02 1.3328082653e-01 8.5519847548e-02 7.8406884685e-02
64 6.1386138614e-01 1.3181231043e-01 9.2301955750e-02 6.7177597738e-02 1.3181230802e-01 9.2301950735e-02 6.7177599493e-02
65 6.2376237624e-01 1.3021627254e-01 9.8726959125e-02 5.5363781584e-02 1.3021626962e-01 9.8726955606e-02 5.5363781583e-02
66 6.3366336634e-01 1.2849425843e-01 1.0477000685e-01 4.3068225262e-02 1.2849425538e-01 1.0477000506e-01 4.3068226575e-02
67 6.4356435644e-01 1.2664792968e-01 1.1040772008e-01 3.0397923775e-02 1.2664793125e-01 1.1040771973e-01 3.0397921832e-02
68 6.5346534653e-01 1.2467908233e-01 1.1561828667e-01 1.7463112100e-02 1.2467908343e-01 1.1561828837e-01 1.7463115529e-02
69 6.6336633663e-01 1.2258961618e-01 1.2038154892e-01 4.3763558959e-03 1.2258961664e-01 1.2038155232e-01 4.3763573469e-03
70 6.7326732673e-01 1.2038155509e-01 1.2467908434e-01 -8.7484791158e-03 1.2038155232e-01 1.2467908343e-01 -8.7484808507e-03
71 6.8316831683e-01 1.1805702847e-01 1.2849425619e-01 -2.1797195967e-02 1.1805702662e-01 1.2849425538e-01 -2.1797195856e-02
72 6.9306930693e-01 1.1561828622e-01 1.3181230822e-01 -3.4656246425e-02 1.1561828837e-01 1.3181230802e-01 -3.4656246833e-02
73 7.0297029703e-01 1.1306768997e-01 1.3462040633e-01 -4.7213742058e-02 1.1306769690e-01 1.3462040445e-01 -4.7213743269e-02
74 7.1287128713e-01 1.1040771799e-01 1.3690767691e-01 -5.9360418526e-02 1.1040771973e-01 1.3690768069e-01 -5.9360418568e-02
75 7.2277227723e-01 1.0764092776e-01 1.3866528979e-01 -7.0990581227e-02 1.0764093022e-01 1.3866528771e-01 -7.0990580816e-02
76 7.3267326733e-01 1.0477000620e-01 1.3988642119e-01 -8.2003033815e-02 1.0477000506e-01 1.3988642566e-01 -8.2003032435e-02
77 7.4257425743e-01 1.0179772152e-01 1.4056636623e-01 -9.2301952893e-02 1.0179772170e-01 1.4056637021e-01 -9.2301950735e-02
78 7.5247524752e-01 9.8726952848e-02 1.4070249392e-01 -1.0179771955e-01 9.8726955606e-02 1.4070249079e-01 -1.0179772170e-01
79 7.6237623762e-01 9.5560678408e-02 1.4029425948e-01 -1.1040772236e-01 9.5560677562e-02 1.4029426076e-01 -1.1040771973e-01
80 7.7227722772e-01 9.2301954838e-02 1.3934326416e-01 -1.1805702951e-01 9.2301950735e-02 1.3934325949e-01 -1.1805702662e-01
81 7.8217821782e-01 8.8953928903e-02 1.3785316849e-01 -1.2467908256e-01 8.8953927731e-02 1.3785316621e-01 -1.2467908343e-01
82 7.9207920792e-01 8.5519848124e-02 1.3582974727e-01 -1.3021626851e-01 8.5519847548e-02 1.3582974582e-01 -1.3021626962e-01
83 8.0198019802e-01 8.2003030909e-02 1.3328082828e-01 -1.3462040327e-01 8.2003032435e-02 1.3328082653e-01 -1.3462040445e-01
84 8.1188118812e-01 7.8406885186e-02 1.3021626587e-01 -1.3785316474e-01 7.8406884685e-02 1.3021626962e-01 -1.3785316621e-01
85 8.2178217822e-01 7.4734885540e-02 1.2664793089e-01 -1.3988642777e-01 7.4734883337e-02 1.2664793125e-01 -1.3988642566e-01
86 8.3168316832e-01 7.0990582072e-02 1.2258961409e-01 -1.4070248742e-01 7.0990580816e-02 1.2258961664e-01 -1.4070249079e-01
87 8.4158415842e-01 6.7177598843e-02 1.1805702585e-01 -1.4029426160e-01 6.7177599493e-02 1.1805702662e-01 -1.4029426076e-01
88 8.5148514851e-01 6.3299627125e-02 1.1306769708e-01 -1.3866528902e-01 6.3299628182e-02 1.1306769690e-01 -1.3866528771e-01
89 8.6138613861e-01 5.9360415245e-02 1.0764093150e-01 -1.3582974369e-01 5.9360418568e-02 1.0764093022e-01 -1.3582974582e-01
90 8.7128712871e-01 5.5363784218e-02 1.0179772269e-01 -1.3181231038e-01 5.5363781583e-02 1.0179772170e-01 -1.3181230802e-01
91 8.8118811881e-01 5.1313579361e-02 9.5560678437e-02 -1.2664793139e-01 5.1313583715e-02 9.5560677562e-02 -1.2664793125e-01
92 8.9108910891e-01 4.7213741091e-02 8.8953928103e-02 -1.2038155214e-01 4.7213743269e-02 8.8953927731e-02 -1.2038155232e-01
93 9.0099009901e-01 4.3068225595e-02 8.2003031564e-02 -1.1306769867e-01 4.3068226575e-02 8.2003032435e-02 -1.1306769690e-01
94 9.1089108911e-01 3.8881045999e-02 7.4734883659e-02 -1.0477000196e-01 3.8881044154e-02 7.4734883337e-02 -1.0477000506e-01
95 9.2079207921e-01 3.4656245355e-02 6.7177597583e-02 -9.5560676903e-02 3.4656246833e-02 6.7177599493e-02 -9.5560677562e-02
96 9.3069306931e-01 3.0397926577e-02 5.9360420731e-02 -8.5519850964e-02 3.0397921832e-02 5.9360418568e-02 -8.5519847548e-02
97 9.4059405941e-01 2.6110186824e-02 5.1313584318e-02 -7.4734880388e-02 2.6110188805e-02 5.1313583715e-02 -7.4734883337e-02
98 9.5049504950e-01 2.1797196485e-02 4.3068226072e-02 -6.3299628759e-02 2.1797195856e-02 4.3068226575e-02 -6.3299628182e-02
99 9.6039603960e-01 1.7463116664e-02 3.4656247119e-02 -5.1313584252e-02 1.7463115529e-02 3.4656246833e-02 -5.1313583715e-02
100 9.7029702970e-01 1.3112143651e-02 2.6110184365e-02 -3.8881045879e-02 1.3112140764e-02 2.6110188805e-02 -3.8881044154e-02
101 9.8019801980e-01 8.7484791764e-03 1.7463117510e-02 -2.6110190428e-02 8.7484808507e-03 1.7463115529e-02 -2.6110188805e-02
102 9.9009900990e-01 4.3763588619e-03 8.7484790494e-03 -1.3112138188e-02 4.3763573469e-03 8.7484808507e-03 -1.3112140764e-02
103 1.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00

View File

@ -1,9 +1,9 @@
x,Vector 1,Vector 2,Vector 3 x,Vector 1,Vector 2,Vector 3,Analytic 1,Analytic 2,Analytic 3
0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00 0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00
1.4285714286e-01,2.3192061397e-01,-4.1790650593e-01,-5.2112088916e-01 1.4285714286e-01,2.3192061397e-01,-4.1790650593e-01,-5.2112088916e-01,2.3192061392e-01,-4.1790650594e-01,-5.2112088917e-01
2.8571428571e-01,4.1790650598e-01,-5.2112088916e-01,-2.3192061388e-01 2.8571428571e-01,4.1790650598e-01,-5.2112088916e-01,-2.3192061388e-01,4.1790650594e-01,-5.2112088917e-01,-2.3192061392e-01
4.2857142857e-01,5.2112088920e-01,-2.3192061385e-01,4.1790650595e-01 4.2857142857e-01,5.2112088920e-01,-2.3192061385e-01,4.1790650595e-01,5.2112088917e-01,-2.3192061392e-01,4.1790650594e-01
5.7142857143e-01,5.2112088915e-01,2.3192061400e-01,4.1790650592e-01 5.7142857143e-01,5.2112088915e-01,2.3192061400e-01,4.1790650592e-01,5.2112088917e-01,2.3192061392e-01,4.1790650594e-01
7.1428571429e-01,4.1790650588e-01,5.2112088921e-01,-2.3192061394e-01 7.1428571429e-01,4.1790650588e-01,5.2112088921e-01,-2.3192061394e-01,4.1790650594e-01,5.2112088917e-01,-2.3192061392e-01
8.5714285714e-01,2.3192061389e-01,4.1790650591e-01,-5.2112088921e-01 8.5714285714e-01,2.3192061389e-01,4.1790650591e-01,-5.2112088921e-01,2.3192061392e-01,4.1790650594e-01,-5.2112088917e-01
1.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00 1.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00,0.0000000000e+00

1 x Vector 1 Vector 2 Vector 3 Analytic 1 Analytic 2 Analytic 3
2 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00
3 1.4285714286e-01 2.3192061397e-01 -4.1790650593e-01 -5.2112088916e-01 2.3192061392e-01 -4.1790650594e-01 -5.2112088917e-01
4 2.8571428571e-01 4.1790650598e-01 -5.2112088916e-01 -2.3192061388e-01 4.1790650594e-01 -5.2112088917e-01 -2.3192061392e-01
5 4.2857142857e-01 5.2112088920e-01 -2.3192061385e-01 4.1790650595e-01 5.2112088917e-01 -2.3192061392e-01 4.1790650594e-01
6 5.7142857143e-01 5.2112088915e-01 2.3192061400e-01 4.1790650592e-01 5.2112088917e-01 2.3192061392e-01 4.1790650594e-01
7 7.1428571429e-01 4.1790650588e-01 5.2112088921e-01 -2.3192061394e-01 4.1790650594e-01 5.2112088917e-01 -2.3192061392e-01
8 8.5714285714e-01 2.3192061389e-01 4.1790650591e-01 -5.2112088921e-01 2.3192061392e-01 4.1790650594e-01 -5.2112088917e-01
9 1.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00 0.0000000000e+00

View File

@ -12,5 +12,5 @@ Scaling will result in a dimensionless variable $\hat{x} = \frac{1}{L}$.
\end{align*} \end{align*}
Now we insert the expression into the original equation Now we insert the expression into the original equation
\begin{align*} \begin{align*}
\frac{d u(\hat{x})}{d\hat{x}^{2}} &= - \frac{F L^{2}}{\gamma} u(\hat{x}) \\ \frac{d u(\hat{x})}{d\hat{x}^{2}} &= - \frac{F L^{2}}{\gamma} u(\hat{x}). \\
\end{align*} \end{align*}

View File

@ -2,7 +2,7 @@
\subsection*{a)} \subsection*{a)}
The function for found the largest off-diagonal can be found in The function to find the largest off-diagonal can be found in
\textbf{matrix.hpp} and \textbf{matrix.cpp}. \textbf{matrix.hpp} and \textbf{matrix.cpp}.
\subsection*{b)} \subsection*{b)}

View File

@ -1 +1,20 @@
\section*{Problem 5} \section*{Problem 5}
\subsection*{a)}
We used the Jacobi's rotation method to solve $\boldsymbol{A} \vec{v} = \lambda \vec{v}$, for $\boldsymbol{A}_{(N \cross N)}$ with $N \in [5, 100]$,
and increased the matrix size by $3$ rows and columns for every new matrix generated. The number of similarity transformations performed for a tridiagonal matrix
of is presented in Figure \ref{fig:transform}. We chose to run the program using dense matrices of same size as the tridiagonal matrices, to compare the scaling data.
What we see is that the number of similarity transformations necessary to solve the system is proportional to the matrix size.
\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{images/transform.pdf}
\caption{Similarity transformations performed as a function of matrix size (N), data is presented in a logarithmic scale.}
\label{fig:transform}
\end{figure}
\subsection*{b)}
For both the tridiagonal and dense matrices we are checking off-diagonal elements above the main diagonal, since these are symmetric matrices.
The max value is found at index $(k,l)$ and for every rotation of the matrix, we update the remaining elements along row $k$ and $l$. This can lead to an increased
value of off-diagonal elements, that previously were close to zero, and extra rotations has to be performed due to these elements. Which suggest that the
number of similarity transformations perfomed on a matrix does not depend on its initial number of non-zero elements, making the Jacobi's rotation algorithm as
computationally expensive for both dense and tridiagonal matrices of size $N \cross N$.

View File

@ -1 +1,21 @@
\section*{Problem 6} \section*{Problem 6}
\subsection*{a)}
The plot in Figure \ref{fig:eigenvector_10} is showing the discretization of $\hat{x}$ with $n=10$.
The eigenvectors and corresponding analytical eigenvectors have a complete overlap suggesting the implementation of the algorithm is correct.
We have included the boundary points for each vector to show a complete solution.
\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{images/eigenvector_10.pdf}
\caption{The plot is showing the elements of eigenvector $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, corresponding to the three lowest eigenvalues of matrix $\boldsymbol{A} (10 \cross 10)$, against the position $\hat{x}$. The analytical eigenvectors $\vec{v}^{(1)}, \vec{v}^{(2)}, \vec{v}^{(3)}$ are also included in the plot.}
\label{fig:eigenvector_10}
\end{figure}
\subsection*{b)}
For the discretization with $n=100$ the solution is visually close to a continuous curve, with a complete overlap of the analytical eigenvectors, presented in Figure \ref{fig:eigenvector_100}.
\begin{figure}
\centering
\includegraphics[width=0.8\textwidth]{images/eigenvector_100.pdf}
\caption{The plot is showing the elements of eigenvector $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$, corresponding to the three lowest eigenvalues of matrix $\boldsymbol{A} (100 \cross 100)$, against the position $\hat{x}$. The analytical eigenvectors $\vec{v}^{(1)}, \vec{v}^{(2)}, \vec{v}^{(3)}$ are also included in the plot.}
\label{fig:eigenvector_100}
\end{figure}

View File

@ -87,6 +87,7 @@ void write_eigenvec(int N)
// Create tridiagonal matrix // Create tridiagonal matrix
arma::mat A = create_symmetric_tridiagonal(N, a, d); arma::mat A = create_symmetric_tridiagonal(N, a, d);
arma::mat analytic = arma::mat(N, N);
arma::vec eigval; arma::vec eigval;
arma::mat eigvec; arma::mat eigvec;
@ -96,13 +97,36 @@ void write_eigenvec(int N)
// Solve using Jacobi rotation method // Solve using Jacobi rotation method
jacobi_eigensolver(A, 10e-14, eigval, eigvec, 100000, iters, converged); jacobi_eigensolver(A, 10e-14, eigval, eigvec, 100000, iters, converged);
// Build analytic eigenvectors
arma::vec v, analytic_vec = arma::vec(N);
for (int i=0; i < N; i++) {
v = eigvec.col(i);
for (int j=0; j < N; j++) {
analytic_vec(j) = std::sin(((j+1.)*(i+1.)*M_PI) / (N+1.));
}
analytic_vec = arma::normalise(analytic_vec);
// Flip the sign of the analytic vector if they are different
if (analytic_vec(0)*v(0) < 0.) {
analytic_vec *= -1;
}
analytic.col(i) = analytic_vec;
}
std::ofstream ofile; std::ofstream ofile;
// Create file based on matrix size, and write header line to file // Create file based on matrix size, and write header line to file
ofile.open("../latex/output/eigenvector_" + std::to_string(N) + ".csv"); ofile.open("../latex/output/eigenvector_" + std::to_string(N) + ".csv");
ofile << "x,Vector 1,Vector 2,Vector 3" << std::endl; ofile << "x,"
<< "Vector 1,Vector 2,Vector 3,"
<< "Analytic 1,Analytic 2,Analytic 3" << std::endl;
// Add boundary value for x=0 // Add boundary value for x=0
ofile << scientific_format(0., 16) << "," ofile << scientific_format(0., 16) << ","
<< scientific_format(0., 16) << ","
<< scientific_format(0., 16) << ","
<< scientific_format(0., 16) << ","
<< scientific_format(0., 16) << "," << scientific_format(0., 16) << ","
<< scientific_format(0., 16) << "," << scientific_format(0., 16) << ","
<< scientific_format(0., 16) << std::endl; << scientific_format(0., 16) << std::endl;
@ -113,10 +137,16 @@ void write_eigenvec(int N)
ofile << scientific_format(x, 16)<< "," ofile << scientific_format(x, 16)<< ","
<< scientific_format(eigvec(i,0), 16) << "," << scientific_format(eigvec(i,0), 16) << ","
<< scientific_format(eigvec(i,1), 16) << "," << scientific_format(eigvec(i,1), 16) << ","
<< scientific_format(eigvec(i,2), 16) << std::endl; << scientific_format(eigvec(i,2), 16) << ","
<< scientific_format(analytic(i,0), 16) << ","
<< scientific_format(analytic(i,1), 16) << ","
<< scientific_format(analytic(i,2), 16) << std::endl;
} }
// Add boundary value for x=1 // Add boundary value for x=1
ofile << scientific_format(1., 16) << "," ofile << scientific_format(1., 16) << ","
<< scientific_format(0., 16) << ","
<< scientific_format(0., 16) << ","
<< scientific_format(0., 16) << ","
<< scientific_format(0., 16) << "," << scientific_format(0., 16) << ","
<< scientific_format(0., 16) << "," << scientific_format(0., 16) << ","
<< scientific_format(0., 16) << std::endl; << scientific_format(0., 16) << std::endl;
@ -128,7 +158,7 @@ int main()
{ {
write_transformation_tridiag(100); write_transformation_tridiag(100);
write_transformation_dense(100); write_transformation_dense(100);
write_eigenvec(6); write_eigenvec(10);
write_eigenvec(100); write_eigenvec(100);
return 0; return 0;
} }

View File

@ -24,29 +24,28 @@ def plot_transformations(save: bool=False) -> None:
fig.savefig("../latex/images/transform.pdf") fig.savefig("../latex/images/transform.pdf")
def plot_eigenvectors(N: int, save: bool=False) -> None: def plot_eigenvectors(N: int, save: bool=False) -> None:
# Load data based on matrix size # Load data based on matrix size
path = f"../latex/output/eigenvector_{N}.csv" path = f"../latex/output/eigenvector_{N}.csv"
eigvec = pd.read_csv(path, header=0) eigvec = pd.read_csv(path, header=0)
fig, ax = plt.subplots() fig, ax = plt.subplots()
ax.plot(eigvec['x'], eigvec['Vector 1'], label='Vector 1') ax.plot(eigvec['x'], eigvec['Vector 1'], label=r'$\vec{v}_{1}$')
ax.plot(eigvec['x'], eigvec['Vector 2'], label='Vector 2') ax.plot(eigvec['x'], eigvec['Vector 2'], label=r'$\vec{v}_{2}$')
ax.plot(eigvec['x'], eigvec['Vector 3'], label='Vector 3') ax.plot(eigvec['x'], eigvec['Vector 3'], label=r'$\vec{v}_{3}$')
ax.plot(eigvec['x'], eigvec['Analytic 1'], '--', label=r'$\vec{v}^{(1)}$')
ax.plot(eigvec['x'], eigvec['Analytic 2'], '--', label=r'$\vec{v}^{(2)}$')
ax.plot(eigvec['x'], eigvec['Analytic 3'], '--', label=r'$\vec{v}^{(3)}$')
ax.set_xlabel(r'Element $\hat{x}_{i}$') ax.set_xlabel(r'Element $\hat{x}_{i}$')
ax.set_ylabel(r'Value of element $v_{i}$') ax.set_ylabel(r'Element $v_{i}$')
ax.legend() ax.legend(loc='upper left')
# Save to file # Save to file
if save is True: if save is True:
fig.savefig(f"../latex/images/eigenvector_{N}.pdf") fig.savefig(f"../latex/images/eigenvector_{N}.pdf")
if __name__ == '__main__': if __name__ == '__main__':
plot_transformations(True) plot_transformations(True)
plot_eigenvectors(6, True) plot_eigenvectors(10, True)
plot_eigenvectors(100, True) plot_eigenvectors(100, True)
# plt.show()