Project-2/src/plot.py
2023-09-25 14:19:58 +02:00

52 lines
1.7 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
sns.set_theme()
plt.rcParams['text.usetex'] = True
def plot_transformations(save: bool=False) -> None:
# Load data
tridiag = pd.read_csv("../latex/output/transform_tridiag.csv", header=0)
dense = pd.read_csv("../latex/output/transform_dense.csv", header=0)
fig, ax = plt.subplots()
ax.loglog(dense['N'], dense['T'], '--', label='Dense')
ax.loglog(tridiag['N'], tridiag['T'], label='Tridiagonal')
ax.set_xlabel('N')
ax.set_ylabel('Similarity transformations')
ax.legend()
# Save to file
if save is True:
fig.savefig("../latex/images/transform.pdf")
def plot_eigenvectors(N: int, save: bool=False) -> None:
# Load data based on matrix size
path = f"../latex/output/eigenvector_{N}.csv"
eigvec = pd.read_csv(path, header=0)
fig, ax = plt.subplots()
ax.plot(eigvec['x'], eigvec['Vector 1'], label=r'$\vec{v}_{1}$')
ax.plot(eigvec['x'], eigvec['Vector 2'], label=r'$\vec{v}_{2}$')
ax.plot(eigvec['x'], eigvec['Vector 3'], label=r'$\vec{v}_{3}$')
ax.plot(eigvec['x'], eigvec['Analytic 1'], '--', label=r'$\vec{v}^{(1)}$')
ax.plot(eigvec['x'], eigvec['Analytic 2'], '--', label=r'$\vec{v}^{(2)}$')
ax.plot(eigvec['x'], eigvec['Analytic 3'], '--', label=r'$\vec{v}^{(3)}$')
ax.set_xlabel(r'Element $\hat{x}_{i}$')
ax.set_ylabel(r'Element $v_{i}$')
ax.legend(loc='upper left')
# Save to file
if save is True:
fig.savefig(f"../latex/images/eigenvector_{N}.pdf")
if __name__ == '__main__':
plot_transformations(True)
plot_eigenvectors(10, True)
plot_eigenvectors(100, True)