\documentclass[../main.tex]{subfiles} \graphicspath{{\subfix{../images/}}} \begin{document} \section{Theory} % problem 1 When we study the Penning traps effect on a particle with a charge $q$, we need to consider the forces acting on the particle. The sum of all forces acting on the particle, is given by the Lorentz force \eqref{eq:lorentz_force}. \begin{equation}\label{eq:lorentz_force} \mathbf{F} = q \mathbf{E} + q \mathbf{v} \times \mathbf{B}, \end{equation} We can use Newton's second law \eqref{eq:newton_second} to determine this sum by \begin{align*} \ddot{\mathbf{r}} &= \frac{1}{m} \sum_{i} \mathbf{F}_{i} \\ &= \frac{1}{m} (q \mathbf{E} + q \mathbf{v} \times \mathbf{B}) \\ &= \frac{q}{m} \big(\frac{V_{0}}{d^{2}} (x, y, -2z) + (B_{0}\dot{y}, -B_{0}\dot{x}, 0) \big), \end{align*} where the complete derivation can be found in \ref{sec:appendix_b}. We can now write the particle's position as \begin{align} \label{eq:motion_x} \ddot{x} - \omega_{0} \dot{y} - \frac{1}{2} \omega_{z}^{2} x &= 0, \\ \label{eq:motion_y} \ddot{y} + \omega_{0} \dot{x} - \frac{1}{2} \omega_{z}^{2} y &= 0, \\ \label{eq:motion_z} \ddot{z} + \omega_{z}^{2} z &= 0, \end{align} % define w_0 og w_z i appendix? In addition, we can find the general solution for eq. \eqref{eq:motion_z}, when we consider the characteristic equation of a second order differential equation \cite{lindstrom:2016:ch10:5}. \begin{align*} r^{2} + \omega_{z}^{2} &= 0 \\ r &= \pm \sqrt{- \omega_{z}^{2}} = \mp i \omega_{z}, \end{align*} two complex roots which gives us solutions in the form of \begin{equation}\label{eq:all_diff_sol} z = c_{1} e^{i \omega_{z} t} + c_{2} e^{-i \omega_{z} t}, \end{equation} For a complex number $z = a + ib$, we can define $e^{z} \equiv e^{a} (\cos{b} + i \sin{b})$ \cite{lindstrom:2016:ch3}. We can rewrite \eqref{eq:all_diff_sol} as \begin{align*} c_{1} e^{i \omega_{z} t} + c_{2} e^{-i \omega_{z} t} &= c_{1} (\cos{\omega_{z} t} + i \sin{\omega_{z} t}) + c_{2} (\cos{\omega_{z} t} - i \sin{\omega_{z} t} \\ &= E \cos{\omega_{z} t} + i F \sin{\omega_{z} t} \end{align*} % Since \eqref{eq:motion_x} and \eqref{eq:motion_y} are coupled, we want to rewrite it as a single differential equation. We can obtain this by introducing $f(t) = x(t) + iy(t)$, \begin{align*} (\ddot{x} - \omega_{0} \dot{y} - \frac{1}{2} \omega_{z}^{2} x) + i (\ddot{y} + \omega_{0} \dot{x} - \frac{1}{2} \omega_{z}^{2} y) &= 0 \\ \ddot{x} - \omega_{0} \dot{y} - \frac{1}{2} \omega_{z}^{2} x + i\ddot{y} + i\omega_{0} \dot{x} - i \frac{1}{2} \omega_{z}^{2} y &= 0 \\ \ddot{x} + i\ddot{y} + i\omega_{0} \dot{x} - \omega_{0} \dot{y} - \frac{1}{2} \omega_{z}^{2} x - i \frac{1}{2} \omega_{z}^{2} y &= 0 \\ \ddot{x} + i\ddot{y} + i\omega_{0} (\dot{x} + i \dot{y}) - \frac{1}{2} \omega_{z}^{2} x - i \frac{1}{2} \omega_{z}^{2} y &= 0 \text{where $i \omega_{0} \dot{x} + (-1) \omega_{0} \dot{y} = i \omega_{0} \dot{x} + i^{2} \omega_{0} \dot{y}$} \\ \ddot{f} + i \omega_{0} \dot{f} - \frac{1}{2} \omega_{z}^{2} f &= 0 \end{align*} Physical properties given by newtons second law \eqref{eq:newton_second} \begin{equation}\label{eq:general_solution} f(t) = A_{+}e^{-i(\omega_{+} t + \phi_{+})} + A_{-}e^{-i(\omega_{-} t + \phi_{-})} \end{equation} The particle moves and its position can be determined using newton. where the electric field %\biblio \end{document}