/** @file PenningTrap.cpp * * @author Cory Alexander Balaton (coryab) * @author Janita Ovidie Sandtrøen Willumsen (janitaws) * * @version 0.1 * * @brief The implementation of the PenningTrap class. * * @bug No known bugs * * @todo Implement evolve_RK4 * @todo Implement evolve_forward_euler * */ #include "PenningTrap.hpp" #include "constants.hpp" #include "typedefs.hpp" #include "utils.hpp" #include #include #include #include PenningTrap::PenningTrap(double B_0, double V_0, double d) { this->B_0 = B_0; this->V_0 = V_0; this->d = d; // Create lambda functions for each iteration in RK4 v_funcs[0] = [this](int i, double dt) { return .5 * dt * this->k_v[0][i]; }; v_funcs[1] = [this](int i, double dt) { return .5 * dt * this->k_v[1][i]; }; v_funcs[2] = [this](int i, double dt) { return dt * this->k_v[2][i]; }; v_funcs[3] = [this](int i, double dt) { return (dt / 6) * (this->k_v[0][i].eval() + this->k_v[1][i].eval() + this->k_v[2][i].eval() + this->k_v[3][i].eval()); }; r_funcs[0] = [this](int i, double dt) { return .5 * dt * this->k_r[0][i]; }; r_funcs[1] = [this](int i, double dt) { return .5 * dt * this->k_r[0][i]; }; r_funcs[2] = [this](int i, double dt) { return dt * this->k_r[2][i]; }; r_funcs[3] = [this](int i, double dt) { return (dt / 6) * (this->k_r[0][i].eval() + this->k_r[1][i].eval() + this->k_r[2][i].eval() + this->k_r[3][i].eval()); }; } PenningTrap::PenningTrap(int i, double B_0, double V_0, double d) : PenningTrap::PenningTrap(B_0, V_0, d) { vec_3d r, v; for (int j = 0; j < i; j++) { r = vec_3d().randn() * .1 * this->d; v = vec_3d().randn() * .1 * this->d; this->add_particle(Particle(1., 40., r, v)); } } PenningTrap::PenningTrap(std::vector particles, double B_0, double V_0, double d) : PenningTrap::PenningTrap(B_0, V_0, d) { this->particles = particles; } void PenningTrap::add_particle(Particle particle) { this->particles.push_back(particle); } vec_3d PenningTrap::external_E_field(vec_3d r) { r(2) *= -2.; double f = this->V_0 / (this->d * this->d); return f * r; } vec_3d PenningTrap::external_B_field(vec_3d r) { return vec_3d{0.,0.,this->B_0}; } vec_3d PenningTrap::force_on_particle(int i, int j) { // Calculate the difference between the particles' position vec_3d res = this->particles[i].r_vec - this->particles[j].r_vec; // Get the distance between the particles double norm = arma::norm(res); // Multiply res with p_j's charge divided by the norm cubed res *= this->particles[j].q / (norm * norm * norm); return res; } vec_3d PenningTrap::total_force_external(int i) { Particle p = this->particles[i]; if (arma::norm(p.r_vec) > this->d) { return vec_3d{0., 0., 0.}; } vec_3d B = this->external_B_field(p.r_vec); vec_3d v_cross_B{p.v_vec(1) * B(2) - p.v_vec(2) * B(1), p.v_vec(2) * B(0) - p.v_vec(0) * B(2), p.v_vec(0) * B(1) - p.v_vec(1) * B(0)}; vec_3d force = p.q * (this->external_E_field(p.r_vec) + v_cross_B); return force; } vec_3d PenningTrap::total_force_particles(unsigned int i) { Particle p = this->particles[i]; vec_3d res; size_t size = this->particles.size(); for (size_t j = 0; j < size; j++) { if (i == j) { continue; } res += this->force_on_particle(i, j); } res *= K_E * (p.q / p.m); return res; } vec_3d PenningTrap::total_force(int i) { return this->total_force_external(i) - this->total_force_particles(i); } void PenningTrap::evolve_RK4(double dt, bool particle_interaction) { std::vector original_particles = this->particles; std::vector tmp_particles = this->particles; std::function force; if (particle_interaction) { force = [this](int i) { return this->total_force(i); }; } else { force = [this](int i) { return this->total_force_external(i); }; } int size = this->particles.size(); this->k_v = sim_arr(4, sim_cols(size)); this->k_r = sim_arr(4, sim_cols(size)); for (int i = 0; i < 4; i++) { #pragma omp parallel for for (int j = 0; j < size; j++) { this->k_v[i][j] = this->total_force(j) / this->particles[j].m; this->k_r[i][j] = this->particles[j].v_vec; Particle *p = &tmp_particles[j]; p->v_vec = original_particles[j].v_vec + this->v_funcs[i](j, dt); p->r_vec = original_particles[j].r_vec + this->r_funcs[i](j, dt); } this->particles = tmp_particles; } } void PenningTrap::evolve_forward_euler(double dt, bool particle_interaction) { std::vector new_state = this->particles; Particle *p; std::function force; if (particle_interaction) { force = [this](int i) { return this->total_force(i); }; } else { force = [this](int i) { return this->total_force_external(i); }; } #pragma omp parallel for private(p) for (size_t i = 0; i < this->particles.size(); i++) { p = &new_state[i]; p->v_vec += dt * force(i) / p->m; p->r_vec += dt * this->particles[i].v_vec; } this->particles = new_state; } sim_arr PenningTrap::simulate(double time, unsigned int steps, std::string method, bool particle_interaction) { double dt = time / (double)steps; sim_arr res(this->particles.size(), sim_cols(steps)); std::function func; if (method == "rk4") { func = [this](double dt, bool particle_interaction) { this->evolve_RK4(dt, particle_interaction); }; } else if (method == "euler") { func = [this](double dt, bool particle_interaction) { this->evolve_forward_euler(dt, particle_interaction); }; } else { std::cout << "Not a valid method!" << std::endl; abort(); } for (size_t j = 0; j < steps; j++) { for (size_t i = 0; i < this->particles.size(); i++) { res[i][j] = this->particles[i].r_vec; } func(dt, particle_interaction); } return res; } void PenningTrap::write_simulation_to_dir(std::string path, double time, int steps, std::string method, bool particle_interaction) { if (path.back() != '/') { path += '/'; } if (mkpath(path, 0777) != 0) { std::cout << "Hello" << std::endl; return; } sim_arr res = this->simulate(time, steps, method, particle_interaction); std::ofstream ofile; #pragma omp parallel for private(ofile) for (size_t i = 0; i < this->particles.size(); i++) { ofile.open(path + "particle_" + std::to_string(i) + ".txt"); for (vec_3d &vec : res[i]) { ofile << vec(0) << "," << vec(1) << "," << vec(2) << "\n"; } ofile.close(); } }