\documentclass[../main.tex]{subfiles} \graphicspath{{\subfix{../images/}}} \begin{document} \appendix \section*{Appendix A}\label{sec:appendix_a} Equations given \begin{equation}\label{eq:newton_second} m \ddot{\mathbf{r}} = \sum_{i} \mathbf{F}_{i} \end{equation} % % \begin{equation}\label{eq:e_field_point} \mathbf{E} = k_{e} \sum_{j=1}^{n} q_j \frac{\mathbf{r} - \mathbf{r}_{j}}{|\mathbf{r} - \mathbf{r}_{j}|^{3}} \end{equation} % \begin{equation}\label{eq:e_field_potential} \mathbf{E} = - \nabla V \end{equation} \section*{Appendix B}\label{sec:appendix_b} Sum of all forces \begin{align*} sum \end{align*} We find the physical coordinates from $x(t) = \text{Re} f(t)$ and $y(t) = \text{Im} f(t)$, where $f(t)$ is given by equation \eqref{eq:general_solution}. We can rewrite $f(t)$ using the definition as \begin{align*} % f(t) =& A_{+}e^{-i(\omega_{+} t + \phi_{+})} + A_{-}e^{-i(\omega_{-} t + \phi_{-})} \\ f(t) =& A_{+}(\cos{\omega_{+} t + \phi_{+}} - i \sin{\omega_{+} t + \phi_{+}}) \\ \numberthis \label{eq:general_solution_trig} &+ A_{-}(\cos{\omega_{-} t + \phi_{-}} - i \sin{\omega_{-} t + \phi_{-}}) \end{align*} % If we rearrange the right side of equation \eqref{eq:general_solution_trig}, we find the physical coordinates \begin{align}\label{eq:physical_coord} x(t) &= A_{+}(\cos{\omega_{+} t + \phi_{+}}) + A_{-}(\cos{\omega_{-} t + \phi_{-}}) \\ y(t) &= - A_{+}(i \sin{\omega_{+} t + \phi_{+}}) - A_{-}(i \sin{\omega_{-} t + \phi_{-}}) \end{align} \end{document}