\documentclass[../main.tex]{subfiles} \graphicspath{{\subfix{../images/}}} \begin{document} \section{Derivation of equations}\label{sec:appendix_b} % Problem 1 \subsection{Equations of motion}\label{sec:eq_motion} % First, we need to define the velocity of the particle \begin{align*} \mathbf{v} \equiv \frac{d \mathbf{r}}{dt} &= \bigg( \frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt} \bigg). \end{align*} % We can rewrite the velocity as $\dot{r} = (\dot{x}, \dot{y}, \dot{z})$, and find the cross product \begin{align*} q \mathbf{v} \cross \mathbf{B} &= q \begin{vmatrix} \hat{e}_{x} & \hat{e}_{y} & \hat{e}_{z} \\ \dot{x} & \dot{y} & \dot{z} \\ 0 & 0 & B_{0} \end{vmatrix} = q \big( B_{0} \dot{y}, -B_{0} \dot{x}, 0 \big). \end{align*} % We are considering an ideal Penning traps, where we define the electric potential as \begin{align*} V(x, y, z) &= \frac{V_{0}}{2 d^{2}}(2z^{2} - x^{2} - y^{2}). \end{align*} % The relationship between the electric field $\mathbf{E}$ and the electric potential of the field is given by \begin{align*} \mathbf{E} &= - \nabla V \\ &= - \bigg( \frac{dV}{dx}, \frac{dV}{dy} \frac{dV}{dz} \bigg) \\ &= \frac{V_{0}}{d^{2}} \big( x, y, -2z \big). \end{align*} % We can now express the Lorentz force as \begin{align*} \mathbf{F} &= q \mathbf{E} + q \mathbf{v} \cross \mathbf{B} \\ &= \frac{q V_{0}}{d^{2}} \big( x, y, -2z \big) + \big(q B_{0} \dot{y}, -q B_{0} \dot{x}, 0 \big), \end{align*} % and insert it into Newtons equation \eqref{eq:newton_second}. We get \begin{align*} \ddot{\mathbf{r}} &= \bigg( \frac{q V_{0}}{m d^{2}} x, \frac{q V_{0}}{m d^{2}} y, -\frac{2 q V_{0}}{m d^{2}} z \bigg) + \bigg(\frac{q B_{0}}{m} \dot{y}, -\frac{q B_{0}}{m} \dot{x}, 0 \bigg), \end{align*} % which can be written as \begin{align*} \ddot{x} &= \frac{q V_{0}}{m d^{2}} x + \frac{q B_{0}}{m} \dot{y}, \\ \ddot{y} &= \frac{q V_{0}}{m d^{2}} y - \frac{q B_{0}}{m} \dot{x}, \\ \ddot{z} &= -\frac{2 q V_{0}}{m d^{2}} z. \end{align*} If we define \begin{equation*} \omega_{0} \equiv \frac{q B_{0}}{m}, \quad \omega_{z}^{2} \equiv \frac{2 q V_{0}}{m d^{2}}, \end{equation*} the equations of motion can be written as \begin{align*} \ddot{x} &= \frac{1}{2} \omega_{z}^{2} x + \omega_{0} \dot{y}, \\ \ddot{y} &= \frac{1}{2} \omega_{z}^{2} y - \omega_{0} \dot{x}, \\ \ddot{z} &= -\omega_{z}^{2} z. \\ \end{align*} \subsection{General solution}\label{sec:eq_general} We consider the characteristic equation of a second order differential equation \cite{lindstrom:2016:ch10:5}, \begin{align*} r^{2} + \omega_{z}^{2} &= 0 \\ r &= \pm \sqrt{- \omega_{z}^{2}}. \end{align*} % The characteristic equation has two complex roots \begin{equation*} r_{1} = - i \omega_{z}, \quad r_{2} = i \omega_{z}, \end{equation*} which give us solutions in the general form \begin{equation*} z = c_{1} e^{i \omega_{z} t} + c_{2} e^{-i \omega_{z} t}. \end{equation*} In addition, for a complex number $z = a + ib$, we can define $e^{z} \equiv e^{a} (\cos{b} + i \sin{b})$ \cite{lindstrom:2016:ch3}. We can rewrite the general solution as \begin{align*} c_{1} e^{i \omega_{z} t} + c_{2} e^{-i \omega_{z} t} &= c_{1} (\cos{\omega_{z} t} + i \sin{\omega_{z} t}) \\ & \quad + c_{2} (\cos{\omega_{z} t} - i \sin{\omega_{z} t} \\ &= E \cos{\omega_{z} t} + i F \sin{\omega_{z} t}. \end{align*} % % \subsection{Complex function}\label{sec:eq_complex} % In sec. \ref{sec:eq_motion} we found the differential equations for $\ddot{x}$ and $\ddot{y}$. To derive a single differential equation, we introduce the complex function $f(t) = x(t) + iy(t)$, which gives us \begin{align*} 0 &= \Big(\ddot{x} - \omega_{0} \dot{y} - \frac{1}{2} \omega_{z}^{2} x \Big) + i \Big(\ddot{y} + \omega_{0} \dot{x} - \frac{1}{2} \omega_{z}^{2} y \Big) \\ &= \ddot{x} - \omega_{0} \dot{y} - \frac{1}{2} \omega_{z}^{2} x + i\ddot{y} + i\omega_{0} \dot{x} - i \frac{1}{2} \omega_{z}^{2} y \\ &= \ddot{x} + i\ddot{y} + i\omega_{0} \dot{x} - \omega_{0} \dot{y} - \frac{1}{2} \omega_{z}^{2} x - i \frac{1}{2} \omega_{z}^{2} y. \\ \end{align*} Using the definition $i = \sqrt{-1}$, we can rewrite \begin{equation*} i \omega_{0} \dot{x} + (-1) \omega_{0} \dot{y} = i \omega_{0} \dot{x} + i^{2} \omega_{0} \dot{y}. \end{equation*} This gives us a single differential equation \begin{align*} 0 &= \ddot{x} + i\ddot{y} + i\omega_{0} (\dot{x} + i \dot{y}) - \frac{1}{2} \omega_{z}^{2} x - i \frac{1}{2} \omega_{z}^{2} y \\ &= \ddot{f} + i \omega_{0} \dot{f} - \frac{1}{2} \omega_{z}^{2} f. \end{align*} % \subsection{Physical coordinates}\label{sec:eq_coord} We can rewrite eq. \eqref{eq:general_solution}, as \begin{align*} f(t) &= A_{+}e^{-i(\omega_{+} t + \phi_{+})} + A_{-}e^{-i(\omega_{-} t + \phi_{-})} \\ &= A_{+}(\cos{(\omega_{+} t + \phi_{+})} - i \sin{(\omega_{+} t + \phi_{+})}) \\ % \numberthis \label{eq:general_solution_trig} & \quad + A_{-}(\cos{(\omega_{-} t + \phi_{-})} - i \sin{(\omega_{-} t + \phi_{-})}). \end{align*} % % \subsection{Upper and lower bounds}\label{sec:upper_lower_bound} To obtain the upper and lower bounds of the particle's distance from the origin, we first find an expression for the second norm (?) defined as $|f(t)| = \sqrt{(x(t))^{2} + (y(t))^{2}}$. \begin{align*} (x(t))^{2} &= \big( A_{+}\cos(\omega_{+} t + \phi_{+}) + A_{-}\cos(\omega_{-} t + \phi_{-}) \big)^{2} \\ &= A_{+}^{2} \cos^{2}(\omega_{+} t + \phi_{+}) \\ & \quad + 2 A_{+}A_{-} \cos(\omega_{+} t + \phi_{+})\cos(\omega_{-} t + \phi_{-}) \\ & \quad + A_{-}^{2}\cos^{2}(\omega_{-} t + \phi_{-}), \\ \end{align*} % \begin{align*} (y(t))^{2} &= \big( - A_{+} \sin(\omega_{+} t + \phi_{+}) - A_{-} \sin(\omega_{-} t + \phi_{-}) \big)^{2} \\ &= A_{+}^{2} \sin^{2}(\omega_{+} t + \phi_{+}) \\ & \quad + 2 A_{+}A_{-} \sin(\omega_{+} t + \phi_{+})\sin(\omega_{-} t + \phi_{-}) \\ & \quad + A_{-}^{2} \sin^{2}(\omega_{-} t + \phi_{-}). \end{align*} % We insert these expressions, and find \begin{align*} |f(t)| &= \sqrt{(x(t))^{2} + (y(t))^{2}} \\ &= \sqrt{A_{+}^{2} + 2 A_{+} A_{-} \cos^{2}(\alpha) + A_{-}^{2}}, \end{align*} % where $\alpha = (\omega_{+} - \omega_{-}) t +( \phi_{+} - \phi_{-})$. If we set $\alpha = 0$ we get $\cos(0) = 1$, and obtain the upper bound \begin{align*} R_{+} &= \sqrt{A_{+}^{2} + 2 A_{+} A_{-} + A_{-}^{2}} \\ &= \sqrt{(A_{+} + A_{-})^{2}} \\ &= A_{+} + A_{-}. \end{align*} If $\alpha = \pi$ we get $\cos(\pi) = -1$, and find the lower bound \begin{align*} R_{-} &= \sqrt{A_{+}^{2} - 2 A_{+} A_{-} + A_{-}^{2}} \\ &= \sqrt{(A_{+} - A_{-})^{2}} \\ &= |A_{+} - A_{-}|. \end{align*} % % \subsection{Bounded solution}\label{sec:bounded_solution} \end{document} % \begin{align*} % \omega_{+} - \omega_{-} &= \frac{\omega_{0} + \sqrt{\omega_{0}^{2} - 2 \omega_{z}^{2}}}{2} - \frac{\omega_{0} - \sqrt{\omega_{0}^{2} - 2 \omega_{z}^{2}}}{2} \\ % &= % \end{align*}