Project-3/src/PenningTrap.cpp
2023-10-16 13:01:21 +02:00

281 lines
7.3 KiB
C++

/** @file PenningTrap.cpp
*
* @author Cory Alexander Balaton (coryab)
* @author Janita Ovidie Sandtrøen Willumsen (janitaws)
*
* @version 0.1
*
* @brief The implementation of the PenningTrap class.
*
* @bug No known bugs
* */
#include "PenningTrap.hpp"
#include "constants.hpp"
#include "typedefs.hpp"
#include "utils.hpp"
PenningTrap::PenningTrap(double B_0, std::function<double(double)> V_0,
double d, double t)
{
this->B_0 = B_0;
this->V_0 = V_0;
this->d = d;
this->t = t;
}
PenningTrap::PenningTrap(unsigned int i, double B_0,
std::function<double(double)> V_0, double d, double t)
: PenningTrap::PenningTrap(B_0, V_0, d)
{
vec_3d r, v;
for (size_t j = 0; j < i; j++) {
r = vec_3d().randn() * .1 * this->d;
v = vec_3d().randn() * .1 * this->d;
this->add_particle(Particle(1., 40., r, v));
}
}
PenningTrap::PenningTrap(std::vector<Particle> particles, double B_0,
std::function<double(double)> V_0, double d, double t)
: PenningTrap::PenningTrap(B_0, V_0, d)
{
this->particles = particles;
}
vec_3d PenningTrap::v_func(unsigned int i, unsigned int j, double dt)
{
switch (i) {
case 0:
return .5 * dt * this->k_v[0][j];
case 1:
return .5 * dt * this->k_v[1][j];
case 2:
return dt * this->k_v[2][j];
case 3:
return (dt / 6.) * (this->k_v[0][j].eval() + this->k_v[1][j].eval() +
this->k_v[2][j].eval() + this->k_v[3][j].eval());
default:
std::cout << "Not valid!" << std::endl;
abort();
}
}
vec_3d PenningTrap::r_func(unsigned int i, unsigned int j, double dt)
{
switch (i) {
case 0:
return .5 * dt * this->k_r[0][j];
case 1:
return .5 * dt * this->k_r[1][j];
case 2:
return dt * this->k_r[2][j];
case 3:
return (dt / 6.) * (this->k_r[0][j].eval() + this->k_r[1][j].eval() +
this->k_r[2][j].eval() + this->k_r[3][j].eval());
default:
std::cout << "Not valid!" << std::endl;
abort();
}
}
void PenningTrap::add_particle(Particle particle)
{
this->particles.push_back(particle);
}
vec_3d PenningTrap::external_E_field(vec_3d r)
{
r(2) *= -2.;
double f = this->V_0(this->t) / (this->d * this->d);
return f * r;
}
vec_3d PenningTrap::external_B_field(vec_3d r)
{
return vec_3d{0., 0., this->B_0};
}
vec_3d PenningTrap::force_on_particle(unsigned int i, unsigned int j)
{
Particle p_j = this->particles[j];
// Calculate the difference between the particles' position
vec_3d res = this->particles[i].r_vec - p_j.r_vec;
// Get the distance between the particles
double norm = arma::norm(res, 2);
// Multiply res with p_j's charge divided by the norm cubed
return vec_3d(res * p_j.q / (norm * norm * norm));
}
vec_3d PenningTrap::total_force_external(unsigned int i)
{
Particle p = this->particles[i];
if (arma::norm(p.r_vec) > this->d) {
return vec_3d{0., 0., 0.};
}
vec_3d force =
p.q * (this->external_E_field(p.r_vec) +
arma::cross(p.v_vec, this->external_B_field(p.r_vec)));
return force;
}
vec_3d PenningTrap::total_force_particles(unsigned int i)
{
Particle p = this->particles[i];
vec_3d res;
for (size_t j = 0; j < this->particles.size(); j++) {
if (i == j) {
continue;
}
res += this->force_on_particle(i, j);
}
return vec_3d(res * K_E * (p.q / p.m));
}
vec_3d PenningTrap::total_force(unsigned int i)
{
return this->total_force_external(i) - this->total_force_particles(i);
}
void PenningTrap::evolve_RK4(double dt, bool particle_interaction)
{
std::vector<Particle> original_particles = this->particles;
std::vector<Particle> tmp_particles = this->particles;
vec_3d (PenningTrap::*force)(unsigned int);
if (particle_interaction) {
force = &PenningTrap::total_force;
}
else {
force = &PenningTrap::total_force_external;
}
size_t size = this->particles.size();
this->k_v = sim_arr(4, sim_cols(size));
this->k_r = sim_arr(4, sim_cols(size));
for (size_t i = 0; i < 4; i++) {
#pragma omp parallel for
for (size_t j = 0; j < this->particles.size(); j++) {
this->k_v[i][j] = (this->*force)(j) / this->particles[j].m;
this->k_r[i][j] = this->particles[j].v_vec;
Particle *p = &tmp_particles[j];
p->v_vec = original_particles[j].v_vec + this->v_func(i, j, dt);
p->r_vec = original_particles[j].r_vec + this->r_func(i, j, dt);
}
this->particles = tmp_particles;
}
this->t += dt;
}
void PenningTrap::evolve_forward_euler(double dt, bool particle_interaction)
{
std::vector<Particle> new_state = this->particles;
Particle *p;
vec_3d (PenningTrap::*force)(unsigned int);
if (particle_interaction) {
force = &PenningTrap::total_force;
}
else {
force = &PenningTrap::total_force_external;
}
#pragma omp parallel for private(p)
for (size_t i = 0; i < this->particles.size(); i++) {
p = &new_state[i];
p->v_vec += dt * (this->*force)(i) / p->m;
p->r_vec += dt * this->particles[i].v_vec;
}
this->particles = new_state;
this->t += dt;
}
sim_arr PenningTrap::simulate(double time, unsigned int steps,
std::string method, bool particle_interaction)
{
double dt = time / (double)steps;
sim_arr res(this->particles.size(), sim_cols(steps));
void (PenningTrap::*func)(double, bool);
if (method == "rk4") {
func = &PenningTrap::evolve_RK4;
}
else if (method == "euler") {
func = &PenningTrap::evolve_forward_euler;
}
else {
std::cout << "Not a valid method!" << std::endl;
abort();
}
for (size_t j = 0; j < steps; j++) {
for (size_t i = 0; i < this->particles.size(); i++) {
res[i][j] = this->particles[i].r_vec;
}
(this->*func)(dt, particle_interaction);
}
return res;
}
void PenningTrap::write_simulation_to_dir(std::string path, double time,
unsigned int steps, std::string method,
bool particle_interaction)
{
if (path.back() != '/') {
path += '/';
}
if (mkpath(path, 0777) != 0) {
std::cout << "Hello" << std::endl;
return;
}
sim_arr res = this->simulate(time, steps, method, particle_interaction);
std::ofstream ofile;
#pragma omp parallel for private(ofile)
for (size_t i = 0; i < this->particles.size(); i++) {
ofile.open(path + "particle_" + std::to_string(i) + ".txt");
for (vec_3d &vec : res[i]) {
ofile << vec(0) << "," << vec(1) << "," << vec(2) << "\n";
}
ofile.close();
}
}
double PenningTrap::fraction_of_particles_left(double time, unsigned int steps, std::string method, bool particle_interaction)
{
sim_arr res = this->simulate(time, steps, method, particle_interaction);
int particles_left = 0;
for (Particle p : this->particles) {
if (arma::norm(p.r_vec) < this->d) {
particles_left++;
}
}
return (double) particles_left / (double) this->particles.size();
}