195 lines
5.5 KiB
C++
195 lines
5.5 KiB
C++
/** @file main.cpp
|
|
*
|
|
* @author Cory Alexander Balaton (coryab)
|
|
* @author Janita Ovidie Sandtrøen Willumsen (janitaws)
|
|
*
|
|
* @version 0.1
|
|
*
|
|
* @brief The main program for this project
|
|
*
|
|
* @bug No known bugs
|
|
* */
|
|
|
|
#include <cmath>
|
|
#include <complex>
|
|
#include <fstream>
|
|
#include <omp.h>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "PenningTrap.hpp"
|
|
#include "utils.hpp"
|
|
|
|
#define PARTICLES 100
|
|
#define N 40000
|
|
#define CHARGE 1. // unit: e
|
|
#define MASS 40. // unit: amu
|
|
|
|
// Particles used for testing
|
|
Particle p1(CHARGE, MASS, vec_3d{20., 0., 20.}, vec_3d{0., 25., 0.});
|
|
Particle p2(CHARGE, MASS, vec_3d{25., 25., 0.}, vec_3d{0., 40., 5.});
|
|
|
|
vec_3d analytical_solution_particle_1(double t)
|
|
{
|
|
double w_0 = T / MASS;
|
|
double w_z2 = (50. * V / 1000.) / (MASS * 500. * 500.);
|
|
double w_p = (w_0 + std::sqrt(w_0 * w_0 - 2. * w_z2)) / 2.;
|
|
double w_n = (w_0 - std::sqrt(w_0 * w_0 - 2. * w_z2)) / 2.;
|
|
double A_p = (25. + w_n * 20.) / (w_n - w_p);
|
|
double A_n = -(25. + w_p * 20.) / (w_n - w_p);
|
|
std::complex<double> f =
|
|
A_p * std::exp(std::complex<double>(0., -w_p * t)) +
|
|
A_n * std::exp(std::complex<double>(0., -w_n * t));
|
|
vec_3d res{std::real(f), std::imag(f), 20. * std::cos(std::sqrt(w_z2) * t)};
|
|
return res;
|
|
}
|
|
|
|
void simulate_single_particle()
|
|
{
|
|
// Initialize trap with particle 1
|
|
PenningTrap trap(std::vector<Particle>{p1});
|
|
|
|
double time = 50.; // microseconds
|
|
|
|
// Simulate and write results to file
|
|
trap.write_simulation_to_dir("output/simulate_single_particle", time, N,
|
|
"rk4", false);
|
|
}
|
|
|
|
void simulate_two_particles()
|
|
{
|
|
// Initialize traps with particles
|
|
PenningTrap trap_no_interaction(std::vector<Particle>{p1, p2});
|
|
PenningTrap trap_with_interaction(std::vector<Particle>{p1, p2});
|
|
|
|
double time = 50.; // microseconds
|
|
|
|
// Simulate and write results to files
|
|
trap_no_interaction.write_simulation_to_dir(
|
|
"output/simulate_2_particles/no_interaction", time, N, "rk4", false);
|
|
trap_with_interaction.write_simulation_to_dir(
|
|
"output/simulate_2_particles/with_interaction", time, N);
|
|
}
|
|
|
|
void simulate_single_particle_with_different_steps()
|
|
{
|
|
double time = 50.; // microseconds
|
|
|
|
std::ofstream ofile;
|
|
|
|
// Calculate relative error for RK4
|
|
std::string path = "output/relative_error/RK4/";
|
|
mkpath(path);
|
|
for (int i = 0; i < 4; i++) {
|
|
int steps = 4000 * std::pow(2, i);
|
|
double dt = time / (double)steps;
|
|
ofile.open(path + std::to_string(steps) + "_steps.txt");
|
|
PenningTrap trap(std::vector<Particle>{p1});
|
|
simulation_t res = trap.simulate(time, steps, "rk4", false);
|
|
for (int i = 0; i < steps; i++) {
|
|
ofile << arma::norm(res.r_vecs[0][i] -
|
|
analytical_solution_particle_1(dt*i))
|
|
<< "\n";
|
|
}
|
|
ofile.close();
|
|
}
|
|
|
|
// Calculate relative error for forward Euler
|
|
path = "output/relative_error/euler/";
|
|
mkpath(path);
|
|
for (int i = 0; i < 4; i++) {
|
|
int steps = 4000 * std::pow(2, i);
|
|
double dt = time / (double)steps;
|
|
ofile.open(path + std::to_string(steps) + "_steps.txt");
|
|
PenningTrap trap(std::vector<Particle>{p1});
|
|
simulation_t res = trap.simulate(time, steps, "euler", false);
|
|
for (int i = 0; i < steps; i++) {
|
|
ofile << arma::norm(res.r_vecs[0][i] -
|
|
analytical_solution_particle_1(dt*i))
|
|
<< "\n";
|
|
}
|
|
ofile.close();
|
|
}
|
|
}
|
|
|
|
void simulate_100_particles()
|
|
{
|
|
PenningTrap trap((unsigned)100);
|
|
|
|
double time = 50.; // microseconds
|
|
|
|
trap.write_simulation_to_dir("output/simulate_100_particles", time, N, "rk4", false);
|
|
}
|
|
|
|
// Wide sweep
|
|
void simulate_100_particles_with_time_potential()
|
|
{
|
|
double time = 500.;
|
|
|
|
double amplitudes[]{.1, .4, .7};
|
|
|
|
double freq_start = .2;
|
|
double freq_end = 2.5;
|
|
double freq_increment = .02;
|
|
size_t freq_iterations = (size_t)((freq_end - freq_start) / freq_increment);
|
|
|
|
double res[4][freq_iterations];
|
|
|
|
std::string path = "output/time_dependent_potential/";
|
|
mkpath(path);
|
|
|
|
std::ofstream ofile;
|
|
|
|
double freq = freq_start;
|
|
for (size_t i = 0; i < freq_iterations; i++) {
|
|
res[0][i] = freq;
|
|
freq += freq_increment;
|
|
}
|
|
|
|
#pragma omp parallel for collapse(2) num_threads(4)
|
|
for (size_t i = 0; i < 3; i++) {
|
|
for (size_t j = 0; j < freq_iterations; j++) {
|
|
PenningTrap trap(
|
|
(unsigned)100, T,
|
|
std::bind(
|
|
[](double f, double r, double t) {
|
|
return (25. * V / 1000.) * (1. + f * std::cos(r * t));
|
|
},
|
|
amplitudes[i], res[0][j], std::placeholders::_1),
|
|
500., 0.);
|
|
res[i + 1][j] =
|
|
trap.fraction_of_particles_left(time, N, "rk4", false);
|
|
}
|
|
}
|
|
|
|
ofile.open(path + "res.txt");
|
|
for (size_t i = 0; i < freq_iterations; i++) {
|
|
ofile << res[0][i] << "," << res[1][i] << "," << res[2][i] << ","
|
|
<< res[3][i] << "\n";
|
|
}
|
|
ofile.close();
|
|
}
|
|
|
|
int main()
|
|
{
|
|
double t0 = omp_get_wtime();
|
|
|
|
// simulate_single_particle();
|
|
|
|
// simulate_two_particles();
|
|
|
|
simulate_single_particle_with_different_steps();
|
|
|
|
double t1 = omp_get_wtime();
|
|
|
|
simulate_100_particles();
|
|
|
|
//simulate_100_particles_with_time_potential();
|
|
|
|
double end = omp_get_wtime();
|
|
|
|
std::cout << "Time: " << (end - t1) << " seconds" << std::endl;
|
|
|
|
return 0;
|
|
}
|