Start proofreading result section

This commit is contained in:
Janita Willumsen 2023-11-29 15:47:55 +01:00
parent 8e81d3d321
commit 33c8ace539
4 changed files with 153 additions and 21 deletions

View File

@ -85,5 +85,20 @@
% Appendix % Appendix
\subfile{sections/appendices} \subfile{sections/appendices}
\end{document} \end{document}
% Method
% Problem 1: OK
% Problem 2: OK
% Problem 3: OK - missing theory of phase transition
% Problem 7:
% Problem 9:
% Results
% Problem 4:
% Problem 5:
% Problem 6:
% Problem 8:
% Problem 9:
%
%

View File

@ -127,5 +127,20 @@ and susceptibility
\frac{\chi}{N} &= \frac{4}{N k_{B} T} \bigg( \frac{3e^{8 \beta J} + e^{-8 \beta J} + 3}{(\cosh(8 \beta J) + 3)^{2}} \bigg) \ . \frac{\chi}{N} &= \frac{4}{N k_{B} T} \bigg( \frac{3e^{8 \beta J} + e^{-8 \beta J} + 3}{(\cosh(8 \beta J) + 3)^{2}} \bigg) \ .
\end{align*} \end{align*}
\section{Change in total system energy}\label{sec:delta_energy}
When we consider the change in energy after flipping a single spin, we evaluate
$\Delta E = E_{\text{after}} - E_{\text{before}}$. We find the $3^{2}$ values as
\begin{align*}
\Delta E = -8J - (-8J) = 0 \\
\Delta E = -8J - 0 = -8J \\
\Delta E = -8J - 8J = -16J \\
\Delta E = 0 - (-8J) = 8J \\
\Delta E = 0 - 0 = 0 \\
\Delta E = 0 - 8J = -8J \\
\Delta E = 8J - (-8J) = 16J \\
\Delta E = 8J - 0 = 8J \\
\Delta E = 8J - 8J = 0,
\end{align*}
where the five distinct values are $\Delta E = \{-16J, -8J, 0, 8J, 16J\}$.
\end{document} \end{document}

View File

@ -177,6 +177,9 @@ Boltzmann constant we derive the remaining units, which can be found in Table
\label{tab:units} \label{tab:units}
\end{table} \end{table}
\subsection{Phase transition and critical temperature}\label{subsec:phase_critical}
% P9 critical temperature
\subsection{The Markov chain Monte Carlo method}\label{subsec:mcmc_method} \subsection{The Markov chain Monte Carlo method}\label{subsec:mcmc_method}
Markov chains consist of a sequence of samples, where the probability of the next Markov chains consist of a sequence of samples, where the probability of the next
sample depend on the probability of the current sample. Whereas the Monte Carlo sample depend on the probability of the current sample. Whereas the Monte Carlo
@ -202,8 +205,9 @@ At each step of flipping a spin, the change in energy is evaluated as
\begin{align*} \begin{align*}
\Delta E &= E_{\text{after}} - E_{\text{before}} \ . \Delta E &= E_{\text{after}} - E_{\text{before}} \ .
\end{align*} \end{align*}
We have to evaluate Since the total system energy only takes three different values, the change in
energy can take $3^{2}$ values. However, there are only five distinct values
$\Delta E = \{-16J, -8J, 0, 8J, 16J\}$, which we find in Appendix \ref{sec:delta_energy}.
\begin{figure}[H] \begin{figure}[H]
\begin{algorithm}[H] \begin{algorithm}[H]
\caption{Metropolis-Hastings Algorithm} \caption{Metropolis-Hastings Algorithm}
@ -226,13 +230,22 @@ We have to evaluate
\EndProcedure \EndProcedure
\end{algorithmic} \end{algorithmic}
\end{algorithm} \end{algorithm}
\caption{Algo}
\end{figure} \end{figure}
We can avoid computing the Boltzmann factor
\subsection{Phase transition and critical temperature}\label{subsec:phase_critical} \begin{equation}
p(\mathbf{s} | T) = e^{-\beta \Delta E}
\label{eq:boltzmann_factor}
\end{equation}
at every spin flip, by using a look up table (LUT) with the possible values. We use
the change in energy $\Delta E$ as a key for the resulting value of the exponential
function in a hash map.
\subsection{Implementation}\label{subsec:implementation} \subsection{Implementation}\label{subsec:implementation}
% P2 % P3 boundary condition and if-tests
To avoid the overhead of if-tests, and take advantage of the parallelization, we
define an index for every edge case. That is, for a spin at a given boundary index
we use a pre-set index (...), to avoid if-tests and reduce overhead and runtime.
% P7 parallelization
\subsection{Tools}\label{subsec:tools} \subsection{Tools}\label{subsec:tools}
The Ising model and MCMC methods are implemented in C++, and parallelized using The Ising model and MCMC methods are implemented in C++, and parallelized using
@ -244,17 +257,3 @@ addition, while optimizing our implementation we used the profiler
\end{document} \end{document}
% Method
% Problem 1: OK
% Problem 2:
% Problem 3:
% Results
% Problem 4:
% Problem 5:
% Problem 6:
% Problem 7:
% Problem 8:
% Problem 9:
%
%

View File

@ -2,5 +2,108 @@
\begin{document} \begin{document}
\section{Results}\label{sec:results} \section{Results}\label{sec:results}
\subsection{Burn-in time}\label{subsec:burnin_time}
We start with a lattice where $L = 20$, to study the burn-in time, that is the
number of Monte Carlo cycles necessary for the system to reach an equilibrium.
We consider two different temperatures $T_{1} = 1.0 J/k_{B}$ and $T_{2} = 2.4 J/k_{B}$,
where $T_{2}$ is close to the critical temperature. We can use the correlation
time $\tau \approx L^{d + z}$ to determine time, where $d$ is the dimensionality
of the system and $z = 2.1665 \pm 0.0012$ \footnote{This value was determined by
Nightingale and Blöte for the Metropolis algorithm.}
% Need to include a section of Onsager's analytical result.
We show the numerical estimates for temperature $T_{1}$ of $\langle \epsilon \rangle$
in Figure \ref{fig:burn_in_energy_1_0} and $\langle |m| \rangle$ in Figure
\ref{fig:burn_in_magnetization_1_0}. For temperature $T_{2}$, the numercal estimate
of $\langle \epsilon \rangle$ is shown in Figure \ref{fig:burn_in_energy_2_4} and
$\langle |m| \rangle$ in Figure \ref{fig:burn_in_magnetization_2_4}. The lattice
is initialized in both an ordered and an unordered state. We observe that for
$T_{1}$ there is no change in either expectation value with increasing number of
Monte Carlo cycles, when we start with an ordered state. As for the unordered
lattice, we observe a change for the first 5000 MC cycles, where it stabilizes.
The approximated expected energy is $-2$ and expected magnetization is $1.0$,
which is to be expected for temperature 0f $1.0$. T is below the critical and the
pdf using $T = 1.0$ result in
\begin{align*}
p(s|T=1.0) &= \frac{1}{e^{-\beta \sum E(s)}} e^{-\beta E(s)} \\
&= \frac{1}{e^{-(1/k_{B}) \sum E(s)}} e^{-(1/k_{B}) E(s)} \ .
\end{align*}
% Burn-in figures
\begin{figure}[H]
\centering
\includegraphics[width=\linewidth]{../images/burn_in_time_magnetization_1_0.pdf}
\caption{$\langle |m| \rangle$ as a function of time, for $T = 1.0 J / k_{B}$}
\label{fig:burn_in_magnetization_1_0}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=\linewidth]{../images/burn_in_time_energy_1_0.pdf}
\caption{$\langle \epsilon \rangle$ as a function of time, for $T = 1.0 J / k_{B}$}
\label{fig:burn_in_energy_1_0}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=\linewidth]{../images/burn_in_time_magnetization_2_4.pdf}
\caption{$\langle |m| \rangle$ as a function of time, for $T = 2.4 J / k_{B}$}
\label{fig:burn_in_magnetization_2_4}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=\linewidth]{../images/burn_in_time_energy_2_4.pdf}
\caption{$\langle \epsilon \rangle$ as a function of time, for $T = 2.4 J / k_{B}$}
\label{fig:burn_in_energy_2_4}
\end{figure}
% Histogram figures
\begin{figure}[H]
\centering
\includegraphics[width=\linewidth]{../images/pd_estimate_1_0.pdf}
\caption{Histogram $T = 1.0 J / k_{B}$}
\label{fig:histogram_1_0}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=\linewidth]{../images/pd_estimate_2_4.pdf}
\caption{Histogram $T = 2.4 J / k_{B}$}
\label{fig:histogram_2_4}
\end{figure}
% Phase transition figures
\begin{figure}
\centering
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/energy.pdf}
\caption{$\langle \epsilon \rangle$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.}
\label{fig:phase_energy}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/magnetization.pdf}
\caption{$\langle |m| \rangle$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.}
\label{fig:phase_magnetization}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/heat_capacity.pdf}
\caption{$C_{V}$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.}
\label{fig:phase_heat}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/susceptibility.pdf}
\caption{$\chi$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.}
\label{fig:phase_susceptibility}
\end{figure}
% Critical temp regression figure
\begin{figure}[H]
\centering
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/linreg.pdf}
\caption{Linear regression, where $\beta_{0}$ is the intercept $T_{c}(L = \infty)$ and $\beta_{1}$ is the slope.}
\label{fig:linreg}
\end{figure}
\end{document} \end{document}