Start proofreading result section
This commit is contained in:
parent
8e81d3d321
commit
33c8ace539
@ -85,5 +85,20 @@
|
|||||||
% Appendix
|
% Appendix
|
||||||
\subfile{sections/appendices}
|
\subfile{sections/appendices}
|
||||||
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
||||||
|
% Method
|
||||||
|
% Problem 1: OK
|
||||||
|
% Problem 2: OK
|
||||||
|
% Problem 3: OK - missing theory of phase transition
|
||||||
|
% Problem 7:
|
||||||
|
% Problem 9:
|
||||||
|
|
||||||
|
% Results
|
||||||
|
% Problem 4:
|
||||||
|
% Problem 5:
|
||||||
|
% Problem 6:
|
||||||
|
% Problem 8:
|
||||||
|
% Problem 9:
|
||||||
|
%
|
||||||
|
%
|
||||||
@ -127,5 +127,20 @@ and susceptibility
|
|||||||
\frac{\chi}{N} &= \frac{4}{N k_{B} T} \bigg( \frac{3e^{8 \beta J} + e^{-8 \beta J} + 3}{(\cosh(8 \beta J) + 3)^{2}} \bigg) \ .
|
\frac{\chi}{N} &= \frac{4}{N k_{B} T} \bigg( \frac{3e^{8 \beta J} + e^{-8 \beta J} + 3}{(\cosh(8 \beta J) + 3)^{2}} \bigg) \ .
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
|
\section{Change in total system energy}\label{sec:delta_energy}
|
||||||
|
When we consider the change in energy after flipping a single spin, we evaluate
|
||||||
|
$\Delta E = E_{\text{after}} - E_{\text{before}}$. We find the $3^{2}$ values as
|
||||||
|
\begin{align*}
|
||||||
|
\Delta E = -8J - (-8J) = 0 \\
|
||||||
|
\Delta E = -8J - 0 = -8J \\
|
||||||
|
\Delta E = -8J - 8J = -16J \\
|
||||||
|
\Delta E = 0 - (-8J) = 8J \\
|
||||||
|
\Delta E = 0 - 0 = 0 \\
|
||||||
|
\Delta E = 0 - 8J = -8J \\
|
||||||
|
\Delta E = 8J - (-8J) = 16J \\
|
||||||
|
\Delta E = 8J - 0 = 8J \\
|
||||||
|
\Delta E = 8J - 8J = 0,
|
||||||
|
\end{align*}
|
||||||
|
where the five distinct values are $\Delta E = \{-16J, -8J, 0, 8J, 16J\}$.
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
@ -177,6 +177,9 @@ Boltzmann constant we derive the remaining units, which can be found in Table
|
|||||||
\label{tab:units}
|
\label{tab:units}
|
||||||
\end{table}
|
\end{table}
|
||||||
|
|
||||||
|
\subsection{Phase transition and critical temperature}\label{subsec:phase_critical}
|
||||||
|
% P9 critical temperature
|
||||||
|
|
||||||
\subsection{The Markov chain Monte Carlo method}\label{subsec:mcmc_method}
|
\subsection{The Markov chain Monte Carlo method}\label{subsec:mcmc_method}
|
||||||
Markov chains consist of a sequence of samples, where the probability of the next
|
Markov chains consist of a sequence of samples, where the probability of the next
|
||||||
sample depend on the probability of the current sample. Whereas the Monte Carlo
|
sample depend on the probability of the current sample. Whereas the Monte Carlo
|
||||||
@ -202,8 +205,9 @@ At each step of flipping a spin, the change in energy is evaluated as
|
|||||||
\begin{align*}
|
\begin{align*}
|
||||||
\Delta E &= E_{\text{after}} - E_{\text{before}} \ .
|
\Delta E &= E_{\text{after}} - E_{\text{before}} \ .
|
||||||
\end{align*}
|
\end{align*}
|
||||||
We have to evaluate
|
Since the total system energy only takes three different values, the change in
|
||||||
|
energy can take $3^{2}$ values. However, there are only five distinct values
|
||||||
|
$\Delta E = \{-16J, -8J, 0, 8J, 16J\}$, which we find in Appendix \ref{sec:delta_energy}.
|
||||||
\begin{figure}[H]
|
\begin{figure}[H]
|
||||||
\begin{algorithm}[H]
|
\begin{algorithm}[H]
|
||||||
\caption{Metropolis-Hastings Algorithm}
|
\caption{Metropolis-Hastings Algorithm}
|
||||||
@ -226,13 +230,22 @@ We have to evaluate
|
|||||||
\EndProcedure
|
\EndProcedure
|
||||||
\end{algorithmic}
|
\end{algorithmic}
|
||||||
\end{algorithm}
|
\end{algorithm}
|
||||||
\caption{Algo}
|
|
||||||
\end{figure}
|
\end{figure}
|
||||||
|
We can avoid computing the Boltzmann factor
|
||||||
\subsection{Phase transition and critical temperature}\label{subsec:phase_critical}
|
\begin{equation}
|
||||||
|
p(\mathbf{s} | T) = e^{-\beta \Delta E}
|
||||||
|
\label{eq:boltzmann_factor}
|
||||||
|
\end{equation}
|
||||||
|
at every spin flip, by using a look up table (LUT) with the possible values. We use
|
||||||
|
the change in energy $\Delta E$ as a key for the resulting value of the exponential
|
||||||
|
function in a hash map.
|
||||||
|
|
||||||
\subsection{Implementation}\label{subsec:implementation}
|
\subsection{Implementation}\label{subsec:implementation}
|
||||||
% P2
|
% P3 boundary condition and if-tests
|
||||||
|
To avoid the overhead of if-tests, and take advantage of the parallelization, we
|
||||||
|
define an index for every edge case. That is, for a spin at a given boundary index
|
||||||
|
we use a pre-set index (...), to avoid if-tests and reduce overhead and runtime.
|
||||||
|
% P7 parallelization
|
||||||
|
|
||||||
\subsection{Tools}\label{subsec:tools}
|
\subsection{Tools}\label{subsec:tools}
|
||||||
The Ising model and MCMC methods are implemented in C++, and parallelized using
|
The Ising model and MCMC methods are implemented in C++, and parallelized using
|
||||||
@ -244,17 +257,3 @@ addition, while optimizing our implementation we used the profiler
|
|||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|
||||||
% Method
|
|
||||||
% Problem 1: OK
|
|
||||||
% Problem 2:
|
|
||||||
% Problem 3:
|
|
||||||
|
|
||||||
% Results
|
|
||||||
% Problem 4:
|
|
||||||
% Problem 5:
|
|
||||||
% Problem 6:
|
|
||||||
% Problem 7:
|
|
||||||
% Problem 8:
|
|
||||||
% Problem 9:
|
|
||||||
%
|
|
||||||
%
|
|
||||||
|
|||||||
@ -2,5 +2,108 @@
|
|||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
\section{Results}\label{sec:results}
|
\section{Results}\label{sec:results}
|
||||||
|
\subsection{Burn-in time}\label{subsec:burnin_time}
|
||||||
|
We start with a lattice where $L = 20$, to study the burn-in time, that is the
|
||||||
|
number of Monte Carlo cycles necessary for the system to reach an equilibrium.
|
||||||
|
We consider two different temperatures $T_{1} = 1.0 J/k_{B}$ and $T_{2} = 2.4 J/k_{B}$,
|
||||||
|
where $T_{2}$ is close to the critical temperature. We can use the correlation
|
||||||
|
time $\tau \approx L^{d + z}$ to determine time, where $d$ is the dimensionality
|
||||||
|
of the system and $z = 2.1665 \pm 0.0012$ \footnote{This value was determined by
|
||||||
|
Nightingale and Blöte for the Metropolis algorithm.}
|
||||||
|
% Need to include a section of Onsager's analytical result.
|
||||||
|
We show the numerical estimates for temperature $T_{1}$ of $\langle \epsilon \rangle$
|
||||||
|
in Figure \ref{fig:burn_in_energy_1_0} and $\langle |m| \rangle$ in Figure
|
||||||
|
\ref{fig:burn_in_magnetization_1_0}. For temperature $T_{2}$, the numercal estimate
|
||||||
|
of $\langle \epsilon \rangle$ is shown in Figure \ref{fig:burn_in_energy_2_4} and
|
||||||
|
$\langle |m| \rangle$ in Figure \ref{fig:burn_in_magnetization_2_4}. The lattice
|
||||||
|
is initialized in both an ordered and an unordered state. We observe that for
|
||||||
|
$T_{1}$ there is no change in either expectation value with increasing number of
|
||||||
|
Monte Carlo cycles, when we start with an ordered state. As for the unordered
|
||||||
|
lattice, we observe a change for the first 5000 MC cycles, where it stabilizes.
|
||||||
|
The approximated expected energy is $-2$ and expected magnetization is $1.0$,
|
||||||
|
which is to be expected for temperature 0f $1.0$. T is below the critical and the
|
||||||
|
pdf using $T = 1.0$ result in
|
||||||
|
\begin{align*}
|
||||||
|
p(s|T=1.0) &= \frac{1}{e^{-\beta \sum E(s)}} e^{-\beta E(s)} \\
|
||||||
|
&= \frac{1}{e^{-(1/k_{B}) \sum E(s)}} e^{-(1/k_{B}) E(s)} \ .
|
||||||
|
\end{align*}
|
||||||
|
% Burn-in figures
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\linewidth]{../images/burn_in_time_magnetization_1_0.pdf}
|
||||||
|
\caption{$\langle |m| \rangle$ as a function of time, for $T = 1.0 J / k_{B}$}
|
||||||
|
\label{fig:burn_in_magnetization_1_0}
|
||||||
|
\end{figure}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\linewidth]{../images/burn_in_time_energy_1_0.pdf}
|
||||||
|
\caption{$\langle \epsilon \rangle$ as a function of time, for $T = 1.0 J / k_{B}$}
|
||||||
|
\label{fig:burn_in_energy_1_0}
|
||||||
|
\end{figure}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\linewidth]{../images/burn_in_time_magnetization_2_4.pdf}
|
||||||
|
\caption{$\langle |m| \rangle$ as a function of time, for $T = 2.4 J / k_{B}$}
|
||||||
|
\label{fig:burn_in_magnetization_2_4}
|
||||||
|
\end{figure}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\linewidth]{../images/burn_in_time_energy_2_4.pdf}
|
||||||
|
\caption{$\langle \epsilon \rangle$ as a function of time, for $T = 2.4 J / k_{B}$}
|
||||||
|
\label{fig:burn_in_energy_2_4}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
% Histogram figures
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\linewidth]{../images/pd_estimate_1_0.pdf}
|
||||||
|
\caption{Histogram $T = 1.0 J / k_{B}$}
|
||||||
|
\label{fig:histogram_1_0}
|
||||||
|
\end{figure}
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\linewidth]{../images/pd_estimate_2_4.pdf}
|
||||||
|
\caption{Histogram $T = 2.4 J / k_{B}$}
|
||||||
|
\label{fig:histogram_2_4}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
% Phase transition figures
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/energy.pdf}
|
||||||
|
\caption{$\langle \epsilon \rangle$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.}
|
||||||
|
\label{fig:phase_energy}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/magnetization.pdf}
|
||||||
|
\caption{$\langle |m| \rangle$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.}
|
||||||
|
\label{fig:phase_magnetization}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/heat_capacity.pdf}
|
||||||
|
\caption{$C_{V}$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.}
|
||||||
|
\label{fig:phase_heat}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/susceptibility.pdf}
|
||||||
|
\caption{$\chi$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.}
|
||||||
|
\label{fig:phase_susceptibility}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
% Critical temp regression figure
|
||||||
|
\begin{figure}[H]
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/linreg.pdf}
|
||||||
|
\caption{Linear regression, where $\beta_{0}$ is the intercept $T_{c}(L = \infty)$ and $\beta_{1}$ is the slope.}
|
||||||
|
\label{fig:linreg}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user