From 9c06592b90685c16a889bd49a703a52225a266e4 Mon Sep 17 00:00:00 2001 From: Janita Willumsen Date: Fri, 17 Nov 2023 12:17:25 +0100 Subject: [PATCH] latex/sections/methods.tex --- latex/sections/methods.tex | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/latex/sections/methods.tex b/latex/sections/methods.tex index 690cefe..a9fc293 100644 --- a/latex/sections/methods.tex +++ b/latex/sections/methods.tex @@ -113,7 +113,7 @@ can be found in table \ref{tab:units}. \end{equation} % \begin{equation}\label{eq:magnetization_total_second} - \langle M^{2} \rangle = frac{8(e^{8 \beta J} + 1)}{\cosh(8 \beta J) + 3} + \langle M^{2} \rangle = \frac{8(e^{8 \beta J} + 1)}{\cosh(8 \beta J) + 3} \end{equation} % \begin{equation}\label{eq:specific_heat_capacity} @@ -121,7 +121,7 @@ can be found in table \ref{tab:units}. \end{equation} % \begin{equation}\label{eq:sesceptibility} - \chi = \frac{4}{N k_{\text{B} T}} \frac{(3e^{8 \beta J} + e^{-8 \beta J} + 3)}{(\cosh(8 \beta J) + 3)^{2}} + \chi = \frac{4}{N k_{\text{B}} T} \frac{(3e^{8 \beta J} + e^{-8 \beta J} + 3)}{(\cosh(8 \beta J) + 3)^{2}} \end{equation} The derivation of analytical expressions can be found in appendix \ref{sec:analytical_expressions}.