diff --git a/latex/references.bib b/latex/references.bib index d9d3d52..47b8284 100644 --- a/latex/references.bib +++ b/latex/references.bib @@ -1,4 +1,10 @@ # Ising model related literature +@misc{hj:2015:comp_phys, + author = {Morten Hjorth-Jensen}, + howpublished = {\url{https://raw.githubusercontent.com/CompPhysics/ComputationalPhysics/master/doc/Lectures/lectures2015.pdf}}, + title = {Computational Physics, Lecture Notes Fall 2015}, + year = {2015} +} @misc{britannica:2023:ferromagnetism, author = {Britannica, The Editors of Encyclopaedia}, title = {ferromagnetism}, diff --git a/latex/sections/conclusion.tex b/latex/sections/conclusion.tex index 073c2e9..144bb0f 100644 --- a/latex/sections/conclusion.tex +++ b/latex/sections/conclusion.tex @@ -2,5 +2,18 @@ \begin{document} \section{Conclusion}\label{sec:conclusion} - +% Draft based on abstract +We have used the Ising model to study the behavior in ferromagnets, when undergoing +a phase transition near a critical temperature. We generated samples using the +Markov chain Monte Carlo method, while utilizing methods of parallelization. +Finding the burn-in time to be approx. 3000 Monte Carlo cycles. For temperature +$T = 1.0 J / k_{B}$ we found a propability distrobution with an expected mean +value of $\mu \approx -1.9969$ and variation $\sigma^{2} = 0.0001$. Whereas the +pdf close to the critical temperature is $\mu \approx -1.2370$ and variation +$\sigma^{2} = 0.0203$. We estimated the expected energy and magnetization per spin, +in addition to the heat capacity and susceptibility. Using the values from +finite sized lattices, we approximated the critical temperature of an infinite +sized lattice. Using linear regression, we numerically estimated $T_{c}$ $T_{C}(L = \infty) \approx 2.2695$ +which is close to the analytical solution $T_{C}(L = \infty) \approx 2.269 J/k_{B}$ +found by Lars Onsager. \end{document} diff --git a/latex/sections/methods.tex b/latex/sections/methods.tex index 69ebbc0..85a009c 100644 --- a/latex/sections/methods.tex +++ b/latex/sections/methods.tex @@ -80,7 +80,8 @@ have two spins oriented up the total energy have two possible values, as shown i conditions.} \label{tab:lattice_config} \end{table} -We use the analytical values, found in Table for both for lattices where $L = 2$ and $L > 2$. +We use the analytical values, found in Table for both for lattices where $L = 2$ +and $L > 2$. However, to compare the quantities for lattices where $L > 2$, we find energy per spin given by @@ -94,6 +95,7 @@ and magnetization per spin given by \label{eq:magnetization_spin} \end{equation} + \subsection{Statistical mechanics}\label{subsec:statistical_mechanics} When we study ferromagnetism, we have to consider the probability for a microstate $\mathbf{s}$ at a fixed temperature $T$. The probability distribution function @@ -103,13 +105,19 @@ $\mathbf{s}$ at a fixed temperature $T$. The probability distribution function \label{eq:boltzmann_distribution} \end{equation} known as the Boltzmann distribution. This is an exponential distribution, where -$\beta$ and $Z$ are given by -\begin{align*} - \beta =& \frac{1}{k_{B}} \ , & - Z &= \sum_{\text{all possible } \mathbf{s}} e^{-\beta E(\mathbf{s})} \ , \\ -\end{align*} -and $k_{B}$ is the Boltzmann constant. $Z$ is a normalizing factor of the pdf, -known as the partition function, which we derive in Appendix \ref{sec:partition_function} +$\beta$ is given by +\begin{equation} + \beta = \frac{1}{k_{B}} \ , + \label{eq:beta} +\end{equation} +where and $k_{B}$ is the Boltzmann constant. $Z$ is a normalizing factor of the +pdf, given by +\begin{equation} + Z = \sum_{\text{all possible } \mathbf{s}} e^{-\beta E(\mathbf{s})} \ , + \label{eq:partition} +\end{equation} +and is known as the partition function. We derive $Z$ in Appendix \ref{sec:partition_function}, +which gives us \begin{equation*} Z = 4 \cosh (8 \beta J) + 12 \ . \end{equation*} @@ -117,27 +125,28 @@ Using the partition function and Eq. \eqref{eq:boltzmann_distribution}, the pdf of a microstate at a fixed temperature is given by \begin{equation} p(\mathbf{s} \ | \ T) = \frac{1}{4 \cosh (8 \beta J) + 12} e^{-\beta E(\mathbf{s})} \ . + \label{eq:pdf} \end{equation} % Add something about why we use the expectation values? We derive the analytical expressions for expectation values in Appendix. \ref{sec:expectation_values}. We find the expected total energy -\begin{equation*} %\label{eq:energy_total_first} +\begin{equation}\label{eq:energy_total_result} \langle E \rangle = -\frac{8J \sinh(8 \beta J)}{\cosh(8 \beta J) + 3} \ , -\end{equation*} +\end{equation} and the expected energy per spin -\begin{equation*} %\label{eq:energy_spin_first} +\begin{equation}\label{eq:energy_spin_result} \langle \epsilon \rangle = \frac{-2J \sinh(8 \beta J)}{ \cosh(8 \beta J) + 3} \ . -\end{equation*} +\end{equation} We find the expected absolute total magnetization -\begin{equation*} %\label{eq:magnetization_total_first} +\begin{equation}\label{eq:magnetization_total_result} \langle |M| \rangle = \frac{2(e^{8 \beta J} + 2)}{\cosh(8 \beta J) + 3} \ , -\end{equation*} +\end{equation} and the expected magnetization per spin -\begin{equation*} %\label{eq:magnetization_spin_first} +\begin{equation}\label{eq:magnetization_spin_result} \langle |m| \rangle = \frac{e^{8 \beta J} + 1}{2( \cosh(8 \beta J) + 3)} \ . -\end{equation*} +\end{equation} -We will also determine the heat capacity +We also need to determine the heat capacity \begin{equation} C_{V} = \frac{1}{k_{B} T^{2}} (\mathbb{E}(E^{2}) - [\mathbb{E}(E)]^{2}) \ , \label{eq:heat_capacity} @@ -180,6 +189,12 @@ Boltzmann constant we derive the remaining units, which can be found in Table \subsection{Phase transition and critical temperature}\label{subsec:phase_critical} % P9 critical temperature +When a ferromagnetic material is heated, it will change at a macroscopic level. +Based on a $2 \times 2$ lattice, we can show that the total energy is equal to the +energy where all spins have the orientation up \cite[p. 426]{hj:2015:comp_phys}. +Increasing the temperature of the external field, the Ising model move from an +ordered to an unordered phase. At the critical temperature the heat capacity $C_{V}$, +and the magnetic susceptibility $\chi$ diverge \cite[p. 431]{hj:2015:comp_phys}. \subsection{The Markov chain Monte Carlo method}\label{subsec:mcmc_method} Markov chains consist of a sequence of samples, where the probability of the next