Produced plot with correct layout

This commit is contained in:
Janita Willumsen 2023-12-04 15:47:40 +01:00
parent 90047decb4
commit eb589ee768
27 changed files with 29 additions and 14 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -149,17 +149,18 @@ sharper when we increase lattice size, we are moving closer to the critical temp
Based on the heat capacity (Figure \ref{fig:phase_heat_10M}) and susceptibility
(Figure \ref{fig:phase_susceptibility_10M}), we estimated the critical temperatures
of lattices of size $L \in \{20, 40, 60, 80, 100\}$ found in Table \ref{tab:critical_temperatures}.
% Tc wide 10M = 2.37, 2.325, 2.3025, 2.295, 2.2875
\begin{table}[H]
\centering
\begin{tabular}{cc} % @{\extracolsep{\fill}}
\hline
$L$ & $T_{c}(L)$ \\
\hline
$20$ & $ J / k_{B}$ \\
$40$ & $ J / k_{B}$ \\
$60$ & $ J / k_{B}$ \\
$80$ & $ J / k_{B}$ \\
$100$ & $ J / k_{B}$ \\
$20$ & $2.37 J / k_{B}$ \\
$40$ & $2.325 J / k_{B}$ \\
$60$ & $2.3025 J / k_{B}$ \\
$80$ & $2.295 J / k_{B}$ \\
$100$ & $2.2875 J / k_{B}$ \\
\hline
\end{tabular}
\caption{Estimated critical temperatures for lattices $L \times L$, where $L$ denote the lattice size.}
@ -172,16 +173,16 @@ we plot the critical temperatures $T_{c}(L)$ of the inverse lattice size $1/L$.
the lattice size increase toward infinity, $1/L$ approaches zero. %
\begin{figure}[H]
\centering
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/10M/linreg.pdf}
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/linreg.pdf}
\caption{Linear regression, where $\beta_{0}$ is the intercept approximating $T_{c}(L = \infty)$, and $\beta_{1}$ is the slope.}
\label{fig:linreg_10M}
\end{figure}
Using linear regression, we find the intercept which gives us an estimated value
of the critical temperature for a lattice of infinite size. We find the critical
temperature to be $T_{c \text{num}} \approx 2.2695 J/k_{B}$. We also compared the
We used linear regression to find the intercept $\beta_{0}$, which gives us an estimated value
of the critical temperature for a lattice of infinite size. The estimated critical temperature
is $T_{c \text{num}} \approx 2.2693 J/k_{B}$. We also compared the
estimate with the analytical solution, the relative error of our estimate is
\begin{equation*}
\text{Relative error} = \frac{T_{c \text{ numerical}} - T_{c \text{ analytical}}}{T_{c \text{ analytical}}} \approx 0.001 J/k_{B}
\text{Relative error} = \frac{T_{c \text{ numerical}} - T_{c \text{ analytical}}}{T_{c \text{ analytical}}} \approx 5.05405 \cdot 10^{-5} J/k_{B}
\end{equation*}
\end{document}

View File

@ -212,7 +212,7 @@ def plot_phase_transition(indir, outdir):
ax4.set_ylabel(r"$\chi$ $(1/J)$")
ax4.legend(title="Lattice size", loc="upper right")
# ax5.legend()
# print(Tc)
figure1.savefig(Path(outdir, "energy.pdf"), bbox_inches="tight")
figure2.savefig(Path(outdir, "magnetization.pdf"), bbox_inches="tight")
@ -228,7 +228,7 @@ def plot_phase_transition(indir, outdir):
if __name__ == "__main__":
plot_phase_transition_alt(
plot_phase_transition(
"data/fox/phase_transition/wide/10M/",
"latex/images/phase_transition/fox/wide/10M/",
)

View File

@ -2,6 +2,20 @@ from os import makedirs
from pathlib import Path
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_theme()
params = {
"font.family": "Serif",
"font.serif": "Roman",
"text.usetex": True,
"axes.titlesize": "large",
"axes.labelsize": "large",
"xtick.labelsize": "large",
"ytick.labelsize": "large",
"legend.fontsize": "medium",
}
plt.rcParams.update(params)
def plot_timing(indir, outdir):
@ -35,9 +49,9 @@ def plot_timing(indir, outdir):
ax1.set_xlabel(xlabel)
ax1.set_ylabel("time (seconds)")
figure1.legend()
ax1.legend()
figure1.savefig(Path(outdir, outfile))
figure1.savefig(Path(outdir, outfile), bbox_inches="tight")
plt.close(figure1)