\documentclass[../ising_model.tex]{subfiles} \begin{document} \appendix \section{Ising model system states}\label{sec:system_states} To avoid counting duplicates, we used \begin{figure}\label{fig:tikz_counting} \centering \begin{tikzpicture} \draw (0, 0) grid (2, 2); % \node[inner] (s1) at (0.5, 0.5) {s}; \node (s1) at (0.5, 1.5) {$s_1$}; \node (s2) at (1.5, 1.5) {$s_2$}; \node (s3) at (0.5, 0.5) {$s_3$}; \node (s4) at (1.5, 0.5) {$s_4$}; \node[gray] (s12) at (2.5, 1.5) {$s_1$}; \node[gray] (s34) at (2.5, 0.5) {$s_3$}; \node[gray] (s13) at (0.5, -0.5) {$s_1$}; \node[gray] (s24) at (1.5, -0.5) {$s_2$}; \draw[red, ->] (s1.east) -- (s2.west); \draw[red, ->] (s2.east) -- (s12.west); \draw[red, ->] (s1.south) -- (s3.north); \draw[red, ->] (s2.south) -- (s4.north); \draw[red, ->] (s3.east) -- (s4.west); \draw[red, ->] (s4.east) -- (s34.west); \draw[red, ->] (s3.south) -- (s13.north); \draw[red, ->] (s4.south) -- (s24.north); \end{tikzpicture} \caption{Rules for multiplying spin pairs.} \end{figure} \section{Analytical expressions}\label{sec:analytical_expressions} The Boltzmann distribution is normalized using a partition function $Z$ given by \begin{align*} Z &= \sum_{\text{all possible } s_{i}}^{N} e^{-\beta E(\mathbf{s})} \\ &= \dots \\ &= 4 \cosh (8 \beta J) + 12 \\ \end{align*} \end{document}