/** @file phase_transition_mpi.cpp * * @author Cory Alexander Balaton (coryab) * @author Janita Ovidie Sandtrøen Willumsen (janitaws) * * @version 1.0 * * @brief Sweep over different temperatures and generate data. * * @bug No known bugs * */ #include "data_type.hpp" #include "monte_carlo.hpp" #include "utils.hpp" #include #include #include #include #include #include /** @brief The main function*/ int main(int argc, char **argv) { if (argc < 5) { std::cout << "You need at least 4 arguments" << std::endl; abort(); } double t0, t1; t0 = MPI_Wtime(); double start = atof(argv[1]), end = atof(argv[2]); int points = atoi(argv[3]), N; int lattice_sizes[] = {20, 40, 60, 80, 100}; double dt = (end - start) / points; int cycles = atoi(argv[4]); std::ofstream ofile; data_t data[points]; // MPI stuff int rank, cluster_size; // Initialize MPI MPI_Init(&argc, &argv); // Get the cluster size and rank MPI_Comm_size(MPI_COMM_WORLD, &cluster_size); MPI_Comm_rank(MPI_COMM_WORLD, &rank); int remainder = points % cluster_size; double i_start; int i_points; // Distribute temperature points if (rank < remainder) { i_points = points / cluster_size + 1; i_start = start + dt * i_points * rank; } else { i_points = points / cluster_size; i_start = start + dt * (i_points * rank + remainder); } data_t i_data[i_points]; std::cout << "Rank " << rank << ": " << i_points << ',' << i_start << '\n'; for (int L : lattice_sizes) { N = L * L; for (size_t i = 0; i < i_points; i++) { i_data[i] = monte_carlo_parallel(L, i_start + dt * i, cycles); } if (rank == 0) { std::copy_n(i_data, i_points, data); for (size_t i = 1; i < cluster_size; i++) { if (rank < remainder) { MPI_Recv((void *)i_data, sizeof(data_t) * (points / cluster_size + 1), MPI_CHAR, i, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE); std::copy_n(i_data, points / cluster_size + 1, data + (points / cluster_size) * i); } else { MPI_Recv((void *)i_data, sizeof(data_t) * (points / cluster_size), MPI_CHAR, i, MPI_ANY_TAG, MPI_COMM_WORLD, MPI_STATUS_IGNORE); std::copy_n(i_data, points / cluster_size, data + (points / cluster_size) * i + remainder); } } std::stringstream outfile; outfile << "output/phase_transition/size_" << L << ".txt"; utils::mkpath(utils::dirname(outfile.str())); ofile.open(outfile.str()); double temp, CV, X; using utils::scientific_format; for (size_t i = 0; i < points; i++) { temp = start + dt * i; CV = (data[i].E2 - data[i].E * data[i].E) / ((double)N * temp * temp); X = (data[i].M2 - data[i].M_abs * data[i].M_abs) / ((double)N * temp); ofile << scientific_format(temp) << ',' << scientific_format(data[i].E / N) << ',' << scientific_format(data[i].M_abs / N) << ',' << scientific_format(CV) << ',' << scientific_format(X) << '\n'; } ofile.close(); } else { MPI_Send(i_data, i_points * sizeof(data_t), MPI_CHAR, 0, rank, MPI_COMM_WORLD); } } t1 = MPI_Wtime(); if (rank == 0) { std::cout << "Time: " << t1 - t0 << " seconds\n"; } MPI_Finalize(); }