\documentclass[../ising_model.tex]{subfiles} \begin{document} \section{Results}\label{sec:results} \subsection{Burn-in time}\label{subsec:burnin_time} $\boldsymbol{Draft}$ We start with a lattice where $L = 20$, to study the burn-in time, that is the number of Monte Carlo cycles necessary for the system to reach an equilibrium. We consider two different temperatures $T_{1} = 1.0 J/k_{B}$ and $T_{2} = 2.4 J/k_{B}$, where $T_{2}$ is close to the critical temperature. We can use the correlation time $\tau \approx L^{d + z}$ to determine time, where $d$ is the dimensionality of the system and $z = 2.1665 \pm 0.0012$ \footnote{This value was determined by Nightingale and Blöte for the Metropolis algorithm.} % Need to include a section of Onsager's analytical result. We show the numerical estimates for temperature $T_{1}$ of $\langle \epsilon \rangle$ in Figure \ref{fig:burn_in_energy_1_0} and $\langle |m| \rangle$ in Figure \ref{fig:burn_in_magnetization_1_0}. For temperature $T_{2}$, the numercal estimate of $\langle \epsilon \rangle$ is shown in Figure \ref{fig:burn_in_energy_2_4} and $\langle |m| \rangle$ in Figure \ref{fig:burn_in_magnetization_2_4}. The lattice is initialized in both an ordered and an unordered state. We observe that for $T_{1}$ there is no change in either expectation value with increasing number of Monte Carlo cycles, when we start with an ordered state. As for the unordered lattice, we observe a change for the first 5000 MC cycles, where it stabilizes. The approximated expected energy is $-2$ and expected magnetization is $1.0$, which is to be expected for temperature 0f $1.0$. T is below the critical and the pdf using $T = 1.0$ result in \begin{align*} p(s|T=1.0) &= \frac{1}{e^{-\beta \sum E(s)}} e^{-\beta E(s)} \\ &= \frac{1}{e^{-(1/k_{B}) \sum E(s)}} e^{-(1/k_{B}) E(s)} \ . \end{align*} % Burn-in figures \begin{figure}[H] \centering \includegraphics[width=\linewidth]{../images/burn_in_time_magnetization_1_0.pdf} \caption{$\langle |m| \rangle$ as a function of time, for $T = 1.0 J / k_{B}$} \label{fig:burn_in_magnetization_1_0} \end{figure} \begin{figure}[H] \centering \includegraphics[width=\linewidth]{../images/burn_in_time_energy_1_0.pdf} \caption{$\langle \epsilon \rangle$ as a function of time, for $T = 1.0 J / k_{B}$} \label{fig:burn_in_energy_1_0} \end{figure} \begin{figure}[H] \centering \includegraphics[width=\linewidth]{../images/burn_in_time_magnetization_2_4.pdf} \caption{$\langle |m| \rangle$ as a function of time, for $T = 2.4 J / k_{B}$} \label{fig:burn_in_magnetization_2_4} \end{figure} \begin{figure}[H] \centering \includegraphics[width=\linewidth]{../images/burn_in_time_energy_2_4.pdf} \caption{$\langle \epsilon \rangle$ as a function of time, for $T = 2.4 J / k_{B}$} \label{fig:burn_in_energy_2_4} \end{figure} \subsection{Probability distribution}\label{subsec:probability_distribution} $\boldsymbol{Draft}$ % Histogram figures We use the estimated burn-in time to set starting time for sampling, then generate samples to plot in a histogram for $T_{1}$ in Figure \ref{fig:histogram_1_0} and $T_{2}$ in Figure \ref{fig:histogram_2_4}. For $T_{1}$ we can see that most samples have the expected value $-2$, we have a distribution with low variance. \begin{figure}[H] \centering \includegraphics[width=\linewidth]{../images/pd_estimate_1_0.pdf} \caption{Histogram $T = 1.0 J / k_{B}$} \label{fig:histogram_1_0} \end{figure} \begin{figure}[H] \centering \includegraphics[width=\linewidth]{../images/pd_estimate_2_4.pdf} \caption{Histogram $T = 2.4 J / k_{B}$} \label{fig:histogram_2_4} \end{figure} \subsection{Phase transition}\label{subsec:phase_transition} $\boldsymbol{Draft}$ % Phase transition figures \begin{figure} \centering \includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/energy.pdf} \caption{$\langle \epsilon \rangle$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.} \label{fig:phase_energy} \end{figure} \begin{figure}[H] \centering \includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/magnetization.pdf} \caption{$\langle |m| \rangle$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.} \label{fig:phase_magnetization} \end{figure} \begin{figure}[H] \centering \includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/heat_capacity.pdf} \caption{$C_{V}$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.} \label{fig:phase_heat} \end{figure} \begin{figure}[H] \centering \includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/susceptibility.pdf} \caption{$\chi$ for $T \in [2.1, 2.4]$, 1000000 MC cycles.} \label{fig:phase_susceptibility} \end{figure} We include results for 10 million MC cycles in Appendix \ref{sec:extra_results} \subsection{Critical temperature}\label{subsec:critical_temperature} $\boldsymbol{Draft}$ We use the critical temperatures found in previous section, in addition to the scaling relation in Equation \eqref{eq:critical_intinite} \begin{equation} T_{c} - T_{c}(L = \infty) = \alpha L^{-1} \label{eq:critical_intinite} \end{equation} to estimate the critical temperature for a lattize of infinte size. We also compared the estimate with the analytical solution \begin{equation} T_{c}(L = \infty) = \frac{2}{\ln (1 + \sqrt{2})} J/k_{B} \approx 2.269 J/k_{B} \end{equation} using linear regression. In Figure \ref{fig:linreg} we find the critical temperatures as function of the inverse lattice size. When the lattice size increase toward infinity, $1/L$ goes toward zero, we find the intercept which gives us an estimated value of the critical temperature for a lattice of infinite size. % Critical temp regression figure \begin{figure}[H] \centering \includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/1M/linreg.pdf} \caption{Linear regression, where $\beta_{0}$ is the intercept $T_{c}(L = \infty)$ and $\beta_{1}$ is the slope.} \label{fig:linreg} \end{figure} \end{document}