\documentclass[../ising_model.tex]{subfiles} \begin{document} \section{Methods}\label{sec:methods} \subsection{The Ising model}\label{sec:ising_model} % Add definitions We will assume a $2 \times 2$ lattice to study the possible system states, and to find analytical expressions necessary in the Markov Chain Monte Carlo method. These results are used to test our code during implementation. % Problem 1 \begin{equation}\label{eq:partition_function} Z = 4 \cosh (8 \beta J) + 12, \end{equation} % \begin{equation}\label{eq:energy_spin_first} \langle \epsilon \rangle = \frac{-2J \sinh(8 \beta J)}{ \cosh(8 \beta J) + 3} \end{equation} % \begin{equation}\label{eq:energy_spin_second} \langle \epsilon^{2} \rangle = \frac{4 J^{2} \cosh(8 \beta J)}{\cosh(8 \beta J) + 3} \end{equation} % \begin{equation}\label{eq:magnetization_spin_first} \langle |m| \rangle = \frac{e^{8 \beta J} + 1}{2( \cosh(8 \beta J) + 3)} \end{equation} % \begin{equation}\label{eq:magnetization_spin_second} \langle |m|^{2} \rangle = \frac{e^{8 \beta J} + 1}{2( \cosh(8 \beta J) + 3)} \end{equation} % \begin{equation}\label{eq:energy_total_first} \langle E \rangle = \frac{-8 J \sinh(8 \beta J)}{\cosh(8 \beta J) + 3} \end{equation} % \begin{equation}\label{eq:energy_total_first_squared} \langle E \rangle^{2} = \frac{64 J^{2} \sinh(8 \beta J)}{(\cosh(8 \beta J) + 3)^{2}} \end{equation} % \begin{equation}\label{eq:energy_total_second} \langle E^{2} \rangle = \frac{64 J^{2} \cosh(8 \beta J)}{\cosh(8 \beta J) + 3} \end{equation} % \begin{equation}\label{eq:magnetization_total_first} \langle |M| \rangle = \frac{2 e^{8 \beta J}}{\cosh(8 \beta J) + 3} \end{equation} % \begin{equation}\label{eq:magnetization_total_first_squared} \langle |M| \rangle^{2} = \frac{4e^{16 \beta J} + 16e^{8 \beta J} + 16}{(\cosh(8 \beta J) + 3)^{2}} \end{equation} % \begin{equation}\label{eq:magnetization_total_second} \langle M^{2} \rangle = \frac{8e^{8 \beta J} + 8}{\cosh(8 \beta J) + 3} \end{equation} % \begin{equation}\label{eq:specific_heat_capacity} C_{V} = \frac{64 J^{2}}{N k_{\text{B}} T^{2}} \Big( \frac{3 \cosh(8 \beta J) + \cosh^{2}(8 \beta J) - \sinh^{2}(8 \beta J)}{(\cosh(8 \beta J) + 3)^{2}} \Big) \end{equation} % \begin{equation}\label{eq:sesceptibility} \chi = \frac{1}{N k_{\text{B}} T} \Big( \frac{12e^{8 \beta J} + 4 e^{-8 \beta J} + 12}{(\cosh(8 \beta J) + 3)^{2}} \Big) \end{equation} The derivation of analytical expressions can be found in appendix \ref{sec:analytical_expressions}. \subsection{Markov Chain Monte Carlo methods}\label{sec:mcmc_methods} \subsection{Implementation}\label{sec:implementation} \subsection{Tools}\label{sec:tools} The Ising model and MCMC methods are implemented in C++, and parallelized using \verb|OpenMP| \cite{openmp:2018}. We used the Python library \verb|matplotlib| \cite{hunter:2007:matplotlib} to produce all the plots, and \verb|seaborn| \cite{waskom:2021:seaborn} to set the theme in the figures. \end{document}