Project-4/python_scripts/phase_transition.py
2023-12-04 15:09:37 +01:00

253 lines
7.0 KiB
Python

from os import makedirs
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import linregress
import seaborn as sns
sns.set_theme()
params = {
"font.family": "Serif",
"font.serif": "Roman",
"text.usetex": True,
"axes.titlesize": "large",
"axes.labelsize": "large",
"xtick.labelsize": "large",
"ytick.labelsize": "large",
"legend.fontsize": "medium",
}
plt.rcParams.update(params)
def plot_phase_transition_alt(indir, outdir):
if not (path := Path(outdir)).exists():
makedirs(path)
files = [
"size_20.txt",
"size_40.txt",
"size_60.txt",
"size_80.txt",
"size_100.txt",
"size_500.txt",
]
labels = ["L = 20", "L = 40", "L = 60", "L = 80", "L = 100", "L = 500"]
figure1, ax1 = plt.subplots()
figure2, ax2 = plt.subplots()
figure3, ax3 = plt.subplots()
figure4, ax4 = plt.subplots()
figure5, ax5 = plt.subplots()
# For linear regression
L = []
Tc = []
size = 20
for file, label in zip(files, labels):
t = []
e = []
m = []
CV = []
X = []
# Append the lattice size
L.append(size)
size += 20
with open(Path(indir, file)) as f:
lines = f.readlines()
for line in lines:
l = line.strip().split(",")
t.append(float(l[0]))
e.append(float(l[1]))
m.append(float(l[2]))
CV.append(float(l[3]))
X.append(float(l[4]))
# Append the critical temp for the current lattice size
Tc.append(t[X.index(max(X))])
ax1.plot(t, e, label=label)
ax2.plot(t, m, label=label)
ax3.plot(t, CV, label=label)
ax4.plot(t, X, label=label)
inv_L = list(map(lambda x: 1 / x, L))
# Attempt linear regression
x = np.linspace(0, 1 / 20, 1001)
regression = linregress(inv_L, Tc)
f = lambda x: regression[0] * x + regression[1]
stats = (
f"$\\beta_{0}$ = {regression[1]:.4f}\n"
f"$\\beta_{1}$ = {regression[0]:.4f}"
)
bbox = dict(boxstyle="round", pad=0.3, fc="white", ec="white", alpha=0.5)
ax5.text(
0.6, 0.6, stats, bbox=bbox, transform=ax1.transAxes, ha="right", va="center"
)
ax5.scatter(inv_L, Tc)
ax5.plot(x, f(x))
ax1.set_xlabel(r"T $(J/k_{B})$")
ax1.set_ylabel(r"$\langle \epsilon \rangle$ $(J)$")
ax1.legend(title="Lattice size", loc="upper right")
ax2.set_xlabel(r"T $(J/k_{B})$")
ax2.set_ylabel(r"$\langle |m| \rangle$ $(unitless)$")
ax2.legend(title="Lattice size", loc="upper right")
ax3.set_xlabel(r"T $(J/k_{B})$")
ax3.set_ylabel(r"$C_{V}$ $(k_{B})$")
ax3.legend(title="Lattice size", loc="upper right")
ax4.set_xlabel(r"T $(J/k_{B})$")
ax4.set_ylabel(r"$\chi$ $(1/J)$")
ax4.legend(title="Lattice size", loc="upper right")
# ax5.legend()
figure1.savefig(Path(outdir, "energy.pdf"), bbox_inches="tight")
figure2.savefig(Path(outdir, "magnetization.pdf"), bbox_inches="tight")
figure3.savefig(Path(outdir, "heat_capacity.pdf"), bbox_inches="tight")
figure4.savefig(Path(outdir, "susceptibility.pdf"), bbox_inches="tight")
figure5.savefig(Path(outdir, "linreg.pdf"), bbox_inches="tight")
plt.close(figure1)
plt.close(figure2)
plt.close(figure3)
plt.close(figure4)
plt.close(figure5)
def plot_phase_transition(indir, outdir):
if not (path := Path(outdir)).exists():
makedirs(path)
files = [
"size_20.txt",
"size_40.txt",
"size_60.txt",
"size_80.txt",
"size_100.txt",
]
labels = [
"20",
"40",
"60",
"80",
"100",
]
figure1, ax1 = plt.subplots()
figure2, ax2 = plt.subplots()
figure3, ax3 = plt.subplots()
figure4, ax4 = plt.subplots()
figure5, ax5 = plt.subplots()
# For linear regression
L = []
Tc = []
size = 20
for file, label in zip(files, labels):
t = []
e = []
m = []
CV = []
X = []
# Append the lattice size
L.append(size)
size += 20
with open(Path(indir, file)) as f:
lines = f.readlines()
for line in lines:
l = line.strip().split(",")
t.append(float(l[0]))
e.append(float(l[1]))
m.append(float(l[2]))
CV.append(float(l[3]))
X.append(float(l[4]))
# Append the critical temp for the current lattice size
Tc.append(t[X.index(max(X))])
ax1.plot(t, e, label=label)
ax2.plot(t, m, label=label)
ax3.plot(t, CV, label=label)
ax4.plot(t, X, label=label)
inv_L = list(map(lambda x: 1 / x, L))
# Attempt linear regression
x = np.linspace(0, 1 / 20, 1001)
regression = linregress(inv_L, Tc)
f = lambda x: regression[0] * x + regression[1]
stats = (
f"$\\beta_{0}$ = {regression[1]:.4f}\n"
f"$\\beta_{1}$ = {regression[0]:.4f}"
)
bbox = dict(boxstyle="round", pad=0.3, fc="white", ec="white", alpha=0.5)
ax5.text(
0.6, 0.6, stats, bbox=bbox, transform=ax1.transAxes, ha="right", va="center"
)
ax5.scatter(inv_L, Tc)
ax5.plot(x, f(x))
ax1.set_xlabel(r"T $(J/k_{B})$")
ax1.set_ylabel(r"$\langle \epsilon \rangle$ $(J)$")
ax1.legend(title="Lattice size", loc="upper right")
ax2.set_xlabel(r"T $(J/k_{B})$")
ax2.set_ylabel(r"$\langle |m| \rangle$ $(unitless)$")
ax2.legend(title="Lattice size", loc="upper right")
ax3.set_xlabel(r"T $(J/k_{B})$")
ax3.set_ylabel(r"$C_{V}$ $(k_{B})$")
ax3.legend(title="Lattice size", loc="upper right")
ax4.set_xlabel(r"T $(J/k_{B})$")
ax4.set_ylabel(r"$\chi$ $(1/J)$")
ax4.legend(title="Lattice size", loc="upper right")
# ax5.legend()
figure1.savefig(Path(outdir, "energy.pdf"), bbox_inches="tight")
figure2.savefig(Path(outdir, "magnetization.pdf"), bbox_inches="tight")
figure3.savefig(Path(outdir, "heat_capacity.pdf"), bbox_inches="tight")
figure4.savefig(Path(outdir, "susceptibility.pdf"), bbox_inches="tight")
figure5.savefig(Path(outdir, "linreg.pdf"), bbox_inches="tight")
plt.close(figure1)
plt.close(figure2)
plt.close(figure3)
plt.close(figure4)
plt.close(figure5)
if __name__ == "__main__":
plot_phase_transition_alt(
"data/fox/phase_transition/wide/10M/",
"latex/images/phase_transition/fox/wide/10M/",
)
plot_phase_transition(
"data/fox/phase_transition/wide/1M/",
"latex/images/phase_transition/fox/wide/1M/",
)
plot_phase_transition(
"data/fox/phase_transition/narrow/10M/",
"latex/images/phase_transition/fox/narrow/10M/",
)
plot_phase_transition(
"data/hp/phase_transition/", "latex/images/phase_transition/hp/"
)
plot_phase_transition(
"data/hp/phase_transition/", "latex/images/phase_transition/hp/"
)
plot_phase_transition(
"data/hp/phase_transition/",
"latex/images/phase_transition/hp/",
)