219 lines
10 KiB
TeX
219 lines
10 KiB
TeX
\documentclass[../ising_model.tex]{subfiles}
|
|
|
|
\begin{document}
|
|
\appendix
|
|
\section{Total energy}\label{sec:energy_special}
|
|
When two spins have the orientation up, the total magnetization is zero. However,
|
|
the total energy of the system have two possible values, due to the location of
|
|
the spin up as visualized in Figure \ref{fig:tikz_neighbor}.
|
|
\begin{figure}
|
|
\centering
|
|
\begin{subfigure}{0.4\linewidth}
|
|
\begin{tikzpicture}
|
|
\draw (0, 0) grid (2, 2);
|
|
\node (s1) at (0.5, 1.5) {$\uparrow$};
|
|
\node (s2) at (1.5, 1.5) {$\uparrow$};
|
|
\node (s3) at (0.5, 0.5) {$\downarrow$};
|
|
\node (s4) at (1.5, 0.5) {$\downarrow$};
|
|
\end{tikzpicture}
|
|
\caption{}
|
|
\label{fig:sub_tikz_neighbor_a}
|
|
\end{subfigure}
|
|
\
|
|
\begin{subfigure}{0.4\linewidth}
|
|
\begin{tikzpicture}
|
|
\draw (0, 0) grid (2, 2);
|
|
\node (s1) at (0.5, 1.5) {$\uparrow$};
|
|
\node (s2) at (1.5, 1.5) {$\downarrow$};
|
|
\node (s3) at (0.5, 0.5) {$\downarrow$};
|
|
\node (s4) at (1.5, 0.5) {$\uparrow$};
|
|
\end{tikzpicture}
|
|
\caption{}
|
|
\label{fig:sub_tikz_neighbor_b}
|
|
\end{subfigure}
|
|
\caption{Possible spin configurations for two spins up.}
|
|
\label{fig:tikz_neighbor}
|
|
\end{figure}
|
|
|
|
|
|
\section{Partition function}\label{sec:partition_function}
|
|
Using the values estimated for the $2 \times 2$ case, found in \ref{tab:lattice_config},
|
|
we find the partition function
|
|
\begin{align*}
|
|
Z &= 1 \cdot e^{-\beta (-8J)} + 4 \cdot e^{-\beta (0)} + 4 \cdot e^{-\beta (0)} \\
|
|
& \quad + 2 \cdot e^{-\beta (8J)} + 4 \cdot e^{-\beta (0)} 1 \cdot e^{-\beta (-8J)} \\
|
|
&= 2e^{8 \beta J} + 2e^{-8 \beta J} + 12.
|
|
\end{align*}
|
|
We rewrite the expression using the identity
|
|
\begin{align*}
|
|
\cosh(8 \beta J) &= 1/2 \big( e^{8 \beta J} + e^{-8 \beta J})
|
|
\end{align*}
|
|
and find
|
|
\begin{align*}
|
|
z &= 4 \cosh (8 \beta J) + 12 \ .
|
|
\end{align*}
|
|
|
|
|
|
\section{Expectation values}\label{sec:expectation_values}
|
|
For a linear function of a stochastic random variable $X$, with a known probability
|
|
distribution, the expected value of $x$ is given by
|
|
\begin{align*}
|
|
\langle aX + b \rangle &= a \cdot \langle X \rangle + b & \text{\cite[p. 131]{springer:2012:modernstat}}
|
|
\end{align*}
|
|
In our case the discrete random variable is the spin configuration, and we want
|
|
to find the expected value of the function $E(\mathbf{s})$.
|
|
|
|
Both energy per spin and magnetization per spin are functions of $\mathbf{s}$.
|
|
In addition, the number of spins is given as a constant for each lattice. We can
|
|
use the expression for $\langle E \rangle$ and $\langle M \rangle$ to find the
|
|
expectation values per spin. For energy per spin
|
|
\begin{align*}
|
|
\langle \epsilon \rangle &= \sum_{i=1}^{N} \epsilon(s_{i}) p(s_{i} \ | \ T) \\
|
|
&= \sum_{i=1}^{N} \frac{E(\mathbf{s})}{N} p(s_{i} \ | \ T) \\
|
|
&= \frac{1}{N} \sum_{i=1}^{N} E(\mathbf{s}) p(s_{i} \ | \ T)
|
|
\end{align*}
|
|
The same applies to magnetization per spin
|
|
\begin{align*}
|
|
\langle |m| \rangle = \frac{1}{N} \sum_{i=1}^{N} |M(s_{i})| p(s_{i} \ | \ T) \ .
|
|
\end{align*}
|
|
Continuing with the expectation values for a $2 \times 2$ lattice, excluding the terms which result in zero, we get
|
|
\begin{align*}
|
|
\langle E \rangle &= (-8J) \cdot \frac{1}{Z} e^{8 \beta J} + 2 \cdot (8J) \cdot \frac{1}{Z} e^{-8 \beta J} \\
|
|
& \quad + (-8J) \cdot \frac{1}{Z} e^{8 \beta J} \\
|
|
&= \frac{16J}{Z} \big(e^{-8 \beta J} - e^{8 \beta J}) \\
|
|
&= -\frac{32J \sinh(8 \beta J)}{4(\cosh(8 \beta J) + 3)} \\
|
|
&= -\frac{8J \sinh(8 \beta J)}{\cosh(8 \beta J) + 3} \ ,
|
|
\end{align*}
|
|
and
|
|
\begin{align*}
|
|
\langle |M| \rangle &= 4 \cdot \frac{1}{Z} \cdot e^{8 \beta J} + 4 \cdot 2 \cdot \frac{1}{Z} \cdot e^{0} \\
|
|
& \quad + 4 \cdot | -2| \cdot \frac{1}{Z} \cdot e^{0} + | -4| \cdot e^{8 \beta J} \\
|
|
&= \frac{8 e^{8 \beta J} + 16}{Z} \\
|
|
&= \frac{4 (2e^{8 \beta J} + 4)}{4(\cosh(8 \beta J) + 3)} \\
|
|
&= \frac{2(e^{8 \beta J} + 2)}{\cosh(8 \beta J) + 3} \ .
|
|
\end{align*}
|
|
The squared energy and magnetization functions are then
|
|
\begin{align*}
|
|
\langle E^{2} \rangle &= (-8J)^{2} \cdot \frac{1}{Z} e^{8 \beta J} + 2 \cdot (8J)^{2} \cdot \frac{1}{Z} e^{-8 \beta J} \\
|
|
& \quad + (-8J)^{2} \cdot \frac{1}{Z} e^{8 \beta J} \\
|
|
&= \frac{128J^{2}}{Z} \big(e^{8 \beta J} + e^{-8 \beta J} \big) \\
|
|
&= \frac{128J^{2} \cosh(8 \beta J)}{4(\cosh(8 \beta J) + 3)} \\
|
|
&= \frac{64J^{2} \cosh(8 \beta J)}{\cosh(8 \beta J) + 3} \ ,
|
|
\end{align*}
|
|
and
|
|
\begin{align*}
|
|
\langle M^{2} \rangle &= 4^{2} \cdot \frac{1}{Z} \cdot e^{8 \beta J} + 4 \cdot 2^{2} \cdot \frac{1}{Z} \cdot e^{0} \\
|
|
& \quad + 4 \cdot (-2)^{2} \cdot \frac{1}{Z} \cdot e^{0} + (-4)^{2}\cdot e^{8 \beta J} \\
|
|
&= \frac{32e^{8 \beta J} + 32}{Z} \\
|
|
&= \frac{4 (8e^{8 \beta J} + 8)}{4(\cosh(8 \beta J) + 3)} \\
|
|
&= \frac{8e^{8 \beta J} + 8}{\cosh(8 \beta J) + 3} \ .
|
|
\end{align*}
|
|
The squared expectation value is given by
|
|
\begin{align*}
|
|
\langle E \rangle^{2} &= \bigg(-\frac{8J \sinh(8 \beta J)}{\cosh(8 \beta J) + 3} \bigg)^{2} \\
|
|
&= \frac{64J^{2} \sinh^{2}(8 \beta J)}{(\cosh(8 \beta J) + 3)^{2}} \ ,
|
|
\end{align*}
|
|
and
|
|
\begin{align*}
|
|
\langle |M| \rangle^{2} &= \Big( \frac{2(e^{8 \beta J} + 2)}{\cosh(8 \beta J) + 3} \Big)^{2} \\
|
|
&= \frac{4(e^{8 \beta J} + 2)^{2}}{(\cosh(8 \beta J) + 3)^{2}} \ .
|
|
\end{align*}
|
|
|
|
|
|
\section{Heat capacity and magnetic susceptibility}\label{sec:heat_susceptibility}
|
|
To find the heat capacity in Eq. \ref{eq:heat_capacity}, we normalize to heat
|
|
capacity per spin
|
|
\begin{align*}
|
|
\frac{C_{V}}{N} &= \frac{1}{N} \frac{1}{k_{B} T^{2}} (\mathbb{E}(E^{2}) - [\mathbb{E}(E)]^{2}) \\
|
|
&= \frac{1}{N k_{B} T^{2}} \mathbb{V}(E) \ .
|
|
\end{align*}
|
|
Using Equation \eqref{eq:susceptibility}, we find the susceptibility per spin
|
|
\begin{align*}
|
|
\frac{\chi}{N} &= \frac{1}{N} \frac{1}{k_{B} T} (\mathbb{E}(M^{2}) - [\mathbb{E}(M)]^{2}) \\
|
|
&= \frac{1}{N k_{B} T} \mathbb{V}(M) \ .
|
|
\end{align*}
|
|
We now have to find the variance of both total energy and total magnetizaation.
|
|
We obtain this using the definition
|
|
\begin{align*}
|
|
\mathbb{V}(X) &= \sum_{x \in D} [(x - \mathbb{E}(x))^2 \cdot p(x)] & \text{\cite[p. 132]{springer:2012:modernstat}} \\
|
|
&= \mathbb{E}(X^{2}) - [\mathbb{E}(X)]^{2} \ .
|
|
\end{align*}
|
|
The variance of the total energy is then given by
|
|
\begin{align*}
|
|
\mathbb{V}(E) &= \mathbb{E}(E^{2}) - [\mathbb{E}(E)]^{2} \\
|
|
&= \frac{64J^{2} \cosh(8 \beta J)}{\cosh(8 \beta J) + 3} - \frac{64J^{2} \sinh^{2}(8 \beta J)}{(\cosh(8 \beta J) + 3)^{2}} \\
|
|
&= 64J^{2} \bigg( \frac{\cosh(8 \beta J)}{\cosh(8 \beta J) + 3} - \frac{\sinh^{2}(8 \beta J)}{(\cosh(8 \beta J) + 3)^{2}} \bigg) \\
|
|
&= 64J^{2} \bigg( \frac{(\cosh(8 \beta J)) \cdot (\cosh(8 \beta J) + 3)}{(\cosh(8 \beta J) + 3)^{2}} \\
|
|
& \quad - \frac{\sinh^{2}(8 \beta J)}{(\cosh(8 \beta J) + 3)^{2}} \bigg) \\
|
|
&= 64J^{2} \bigg( \frac{\cosh^{2}(8 \beta J) + 3\cosh(8 \beta J) - \sinh^{2}(8 \beta J)}{(\cosh(8 \beta J) + 3)^{2}} \bigg) \\
|
|
&= 64J^{2} \bigg( \frac{3\cosh(8 \beta J) + 1}{(\cosh(8 \beta J) + 3)^{2}} \bigg) \ ,
|
|
\end{align*}
|
|
and the variance of the total magnetization is given by
|
|
\begin{align*}
|
|
\mathbb{V}(M) &= \mathbb{E}(M^{2}) - [\mathbb{E}(|M|)]^{2} \\
|
|
&= \frac{8e^{8 \beta J} + 8}{\cosh(8 \beta J) + 3} - \frac{4(e^{8 \beta J} + 2)^{2}}{(\cosh(8 \beta J) + 3)^{2}} \\
|
|
&= \frac{(8(e^{8 \beta J} + 1)) \cdot (\cosh(8 \beta J) + 3) - 4(e^{8 \beta J} + 2)^{2}}{(\cosh(8 \beta J) + 3)^{2}} \\
|
|
&= \frac{4(e^{8 \beta J} + 1) \cdot (e^{8 \beta J} + e^{-8 \beta J})}{(\cosh(8 \beta J) + 3)^{2}} \\
|
|
& \quad + \frac{24(e^{8 \beta J} + 1) - 4(e^{8 \beta J} + 1)^{2}}{(\cosh(8 \beta J) + 3)^{2}}\\
|
|
% &= \frac{4e^{2(8 \beta J)} + 4e^{8 \beta J} 4e^{0} + 4e^{-8 \beta J} 24e^{8 \beta J} + 24 - 4e^{2(8 \beta J)} - 16e^{8 \beta J} - 16}{(\cosh(8 \beta J) + 3)^{2}} \\
|
|
&= \frac{4(3e^{8 \beta J} + e^{-8 \beta J} + 3)}{(\cosh(8 \beta J) + 3)^{2}} \ .
|
|
\end{align*}
|
|
We find the heat capacity
|
|
\begin{align*}
|
|
\frac{C_{V}}{N} &= \frac{64J^{2} }{N k_{B} T^{2}} \bigg( \frac{3\cosh(8 \beta J) + 1}{(\cosh(8 \beta J) + 3)^{2}} \bigg) \ ,
|
|
\end{align*}
|
|
and susceptibility
|
|
\begin{align*}
|
|
\frac{\chi}{N} &= \frac{4}{N k_{B} T} \bigg( \frac{3e^{8 \beta J} + e^{-8 \beta J} + 3}{(\cosh(8 \beta J) + 3)^{2}} \bigg) \ .
|
|
\end{align*}
|
|
|
|
|
|
\section{Change in total system energy}\label{sec:delta_energy}
|
|
When we consider the change in energy after flipping a single spin, we evaluate
|
|
$\Delta E = E_{\text{after}} - E_{\text{before}}$. We find the $3^{2}$ values as
|
|
\begin{align*}
|
|
\Delta E = -8J - (-8J) = 0 \\
|
|
\Delta E = -8J - 0 = -8J \\
|
|
\Delta E = -8J - 8J = -16J \\
|
|
\Delta E = 0 - (-8J) = 8J \\
|
|
\Delta E = 0 - 0 = 0 \\
|
|
\Delta E = 0 - 8J = -8J \\
|
|
\Delta E = 8J - (-8J) = 16J \\
|
|
\Delta E = 8J - 0 = 8J \\
|
|
\Delta E = 8J - 8J = 0,
|
|
\end{align*}
|
|
where the five distinct values are $\Delta E = \{-16J, -8J, 0, 8J, 16J\}$.
|
|
|
|
|
|
\section{Additional results}\label{sec:additional_results}
|
|
We also did the phase transition experiment using 1 million MC cycles. In Figure \ref{fig:phase_energy_1M}
|
|
we show expected energy per spin, and in Figure \ref{fig:phase_magnetization_1M}
|
|
expected magnetization per spin.
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/10M/energy.pdf}
|
|
\caption{$\langle \epsilon \rangle$ for $T \in [2.1, 2.4]$, $10^{6}$ MC cycles.}
|
|
\label{fig:phase_energy_1M}
|
|
\end{figure} %
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/10M/magnetization.pdf}
|
|
\caption{$\langle |m| \rangle$ for $T \in [2.1, 2.4]$, $10^{6}$ MC cycles.}
|
|
\label{fig:phase_magnetization_1M}
|
|
\end{figure} %
|
|
In Figure \ref{fig:phase_heat_1M} we show heat capacity, and in Figure \ref{fig:phase_susceptibility_1M}
|
|
the magnetic susceptibility.
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/10M/heat_capacity.pdf}
|
|
\caption{$C_{V}$ for $T \in [2.1, 2.4]$, $10^{6}$ MC cycles.}
|
|
\label{fig:phase_heat_1M}
|
|
\end{figure} %
|
|
\begin{figure}[H]
|
|
\centering
|
|
\includegraphics[width=\linewidth]{../images/phase_transition/fox/wide/10M/susceptibility.pdf}
|
|
\caption{$\chi$ for $T \in [2.1, 2.4]$, $10^{6}$ MC cycles.}
|
|
\label{fig:phase_susceptibility_1M}
|
|
\end{figure}
|
|
|
|
\end{document} |