Add draft abstract and conclusion.
This commit is contained in:
parent
288bfb7058
commit
ae8dd4f24c
BIN
latex/images/youngs_double_slit.pdf
Normal file
BIN
latex/images/youngs_double_slit.pdf
Normal file
Binary file not shown.
@ -8,6 +8,14 @@
|
|||||||
year = {2020}
|
year = {2020}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@misc{mit:2004:physics,
|
||||||
|
author = {Sen-ben Liao and Peter Dourmashkin and John W. Belcher},
|
||||||
|
title = {Course notes in Physics 8.02 at MIT},
|
||||||
|
year = {2004},
|
||||||
|
url = {https://web.mit.edu/8.02t/www/802TEAL3D/visualizations/coursenotes/modules/guide14.pdf},
|
||||||
|
urldate = {2023-12-22}
|
||||||
|
}
|
||||||
|
|
||||||
@misc{britannica:1999:light,
|
@misc{britannica:1999:light,
|
||||||
author = {The Editors of Encyclopaedia Britannica},
|
author = {The Editors of Encyclopaedia Britannica},
|
||||||
title = {Light},
|
title = {Light},
|
||||||
|
|||||||
@ -88,7 +88,7 @@
|
|||||||
\noaffiliation % ignore this, but keep it.
|
\noaffiliation % ignore this, but keep it.
|
||||||
|
|
||||||
% Abstract
|
% Abstract
|
||||||
% \subfile{sections/abstract}
|
\subfile{sections/abstract}
|
||||||
|
|
||||||
\maketitle
|
\maketitle
|
||||||
|
|
||||||
|
|||||||
@ -2,6 +2,17 @@
|
|||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
\begin{abstract}
|
\begin{abstract}
|
||||||
|
We have simulated the two-dimensional time-dependent Schrödinger equation, to study
|
||||||
|
variations of the double-slit experiment. To solve the partial differential equations
|
||||||
|
we have applied the Crank-Nicolson scheme in 2+1 dimensions, to derive a discretized
|
||||||
|
equation. In addition, we have used Dirichlet boundary conditions to express the
|
||||||
|
equation in matrix form and solve it using the sparse matrix solver \verb|superlu|.
|
||||||
|
Our implementation, and choice of solver method, resulted in conserved total
|
||||||
|
probability $\sum_{\ivec, \jvec} p_{\ivec, \jvec}^{n}=1$ for both the single and
|
||||||
|
double slit setup. To illustrate the time evolution of the probability function,
|
||||||
|
we created colormap plots at time steps $t = [0, 0.001, 0.002]$. We also included
|
||||||
|
separate plots for each time step of Re$(u_{\ivec, \jvec})$ and Im$(u_{\ivec, \jvec})$.
|
||||||
|
In addition, we determined the normalized particle detection probability $p(y \ | \ x=0.8, t=0.002)$,
|
||||||
|
for single-, double- and triple-slit.
|
||||||
\end{abstract}
|
\end{abstract}
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|||||||
@ -2,6 +2,24 @@
|
|||||||
|
|
||||||
\begin{document}
|
\begin{document}
|
||||||
\section{Conclusion}\label{sec:conclusion}
|
\section{Conclusion}\label{sec:conclusion}
|
||||||
|
% Rewrite this section to differ from the abstract
|
||||||
|
We have simulated the two-dimensional time-dependent Schrödinger equation, to study
|
||||||
|
variations of the double-slit experiment. To solve the partial differential equations
|
||||||
|
we have applied the Crank-Nicolson scheme in 2+1 dimensions, and derived a discretized
|
||||||
|
equation. In addition, we have used Dirichlet boundary conditions to express the
|
||||||
|
equation in matrix form and solve it using the sparse matrix solver \verb|superlu|.
|
||||||
|
Our implementation, and choice of solver method, resulted in conserved total
|
||||||
|
probability $\sum_{\ivec, \jvec} p_{\ivec, \jvec}^{n}=1$ for both the single and
|
||||||
|
double slit setup.
|
||||||
|
|
||||||
|
To illustrate the time evolution of the probability function $p_{\ivec, \jvec}^{n} = u_{\ivec, \jvec}^{n*} u_{\ivec, \jvec}^{n}$,
|
||||||
|
we created colormap plots at time steps $t = [0, 0.001, 0.002]$. Since we are working
|
||||||
|
with complex numbers, we included separate plots for each time step of Re$(u_{\ivec, \jvec})$
|
||||||
|
and Im$(u_{\ivec, \jvec})$.
|
||||||
|
% We observed something...
|
||||||
|
|
||||||
|
In addition, we determined the normalized particle detection probability $p(y \ | \ x=0.8, t=0.002)$,
|
||||||
|
for single-, double- and triple-slit.
|
||||||
|
% We observed something here as well...
|
||||||
|
|
||||||
\end{document}
|
\end{document}
|
||||||
|
|||||||
@ -85,9 +85,35 @@ can be found in Appendix \ref{ap:crank_nicolson}.
|
|||||||
\subsection{The double-slit experiment}\label{ssec:double_slit} %
|
\subsection{The double-slit experiment}\label{ssec:double_slit} %
|
||||||
Thomas Young first performed the double-slit experiment in 1801 to demonstrate the
|
Thomas Young first performed the double-slit experiment in 1801 to demonstrate the
|
||||||
principle of interference of light \cite{britannica:2023:young}, while postulating
|
principle of interference of light \cite{britannica:2023:young}, while postulating
|
||||||
light as waves rather than particles. The double-slit experiment gives a diffraction
|
light as waves rather than particles. The double-slit experiment result in a diffraction
|
||||||
pattern, where constructive interference of light result in bright spots, and destructive
|
pattern on a detector screen, where constructive interference of light result in
|
||||||
interference result in dark spots.
|
bright spots, and destructive interference result in dark spots as showed in Figure
|
||||||
|
\ref{fig:youngs_double_slit}.
|
||||||
|
\begin{figure}
|
||||||
|
\centering
|
||||||
|
\includegraphics[width=\linewidth]{images/youngs_double_slit.pdf}
|
||||||
|
\caption{The setup of Thomas Young's double slit experiment, where $S_{0}$ denotes
|
||||||
|
the light source, $S_{1}$ and $S_{2}$ denotes the slits in the wall.}
|
||||||
|
\label{fig:youngs_double_slit}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
After the wave passes through the two slits, the pattern observed is determined by
|
||||||
|
the path difference determined by
|
||||||
|
\begin{align*}
|
||||||
|
\delta = d \sin (\theta) = m \lambda \ ,
|
||||||
|
\end{align*}
|
||||||
|
where $\lambda$ is the wavelength and $m$ is called the order number. $d$ is the
|
||||||
|
distance between the center of the two slits, assuming that the distance between
|
||||||
|
the wall and the detector screen $L >> \delta$ \cite[p. 6]{mit:2004:physics}. In
|
||||||
|
this case, we observe constructive interference when
|
||||||
|
\begin{align*}
|
||||||
|
\delta = m \lambda && m = 0, \pm 1, \pm 2 \dots \ ,
|
||||||
|
\end{align*}
|
||||||
|
and destructive interference when
|
||||||
|
\begin{align*}
|
||||||
|
\delta = (m + \frac{1}{2}) \lambda && m = 0, \pm 1, \pm 2 \dots \ ,
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
% Something about Heisenberg uncertainty principle
|
% Something about Heisenberg uncertainty principle
|
||||||
|
|
||||||
\subsection{Implementation}\label{ssec:implementation} %
|
\subsection{Implementation}\label{ssec:implementation} %
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user