Project-5/latex/sections/methods.tex

255 lines
11 KiB
TeX

\documentclass[../schrodinger_simulation.tex]{subfiles}
\begin{document}
\section{Methods}\label{sec:methods} %
\subsection{The Schrödinger equation}\label{ssec:schrodinger} %
% Add something that takes Planck to Schrödinger
% In classical mechanics, we have Newton laws and conservation of energy. In quantum
% mechanics, we have Schrödinger equation.
The Schrödinger equation has a general form
\begin{align}
i \hbar \frac{\partial}{\partial t} | \Psi \rangle &= \hat{H} | \Psi \rangle \ ,
\label{eq:schrodinger_general}
\end{align}
where $i$ is the imaginary number, and $\hbar$ is Plancks constant. $\hat{H}$ is
a Hamiltonian operator, which represent the energy for the system, and $| \Psi \rangle$
is the quantum state. In two-dimensional position space, the quantum state can
be expressed using the time-dependent complex-valued wave function $\Psi (x, y, t)$.
Using Born rule, the square modulus of the wave function is proportional to the
probability density of finding a particle at position $(x, y)$ at time t. The relation
is given by
\begin{align}
p(x, y \ | \ t) &= |\Psi(x, y, t)|^{2} = \Psi^{*}(x, y, t) \Psi(x, y, t) \ ,
\label{eq:born_rule}
\end{align}
where $\Psi^{*}$ denotes the complex conjugated wave function.
% Add something about kinetic and potential energy, to introduce the potential V
When the potential is time-independent, the Schrödinger equation can be expressed as
\begin{align*}
i \hbar \frac{\partial}{\partial t} \Psi (x, y, t) &= - \frac{\hbar^{2}}{2m} \bigg( \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} \bigg) \Psi (x, y, t) \\
& \quad + V(x, y, t) \Psi (x, y, t) \numberthis \ .
\label{eq:schrodinger_special}
\end{align*}
The partial derivatives (...) gives the kinetic energy, and the potental $V$ is
the external environment. In this experiment we will only consider the case where
the potential is time-independent, resulting in $V = V(x, y)$
When we scale Schrödinger equation by the dimensionful variables, we are left with
a wave function $u$, potential $v$ and the dimensionless equation
\begin{align}
i \frac{\partial u}{\partial t} &= - \frac{\partial^{2} u}{\partial x^{2}} - \frac{\partial^{2} u}{\partial y^{2}} + v(x, y) u \ .
\label{eq:schrodinger_dimensionless}
\end{align} %
This gives us the Born rule
\begin{align}
p(x, y \ | \ t) &= |u(x, y, t)|^{2} = u^{*}(x, y, t) u(x, y, t) \ .
\label{eq:born_rule_scaled}
\end{align}
\subsection{The Crank-Nicolson scheme}\label{ssec:crank_nicolson} %
When we evaluate a particle in position space, we have to consider partial differential
equations (PDE). To solve these numerically, we have to discretize Equation \eqref{eq:schrodinger_dimensionless}.
We use the $\theta$-rule \footnote{Using the $\theta$-rule, we can derive Forward Euler using $\theta = 1$, and Backward Euler using $\theta = 0$},
to combine the forward (explicit) and backward (implicit) finite difference method.
The result is a linear combination of the explicit and implicit scheme, given by
\begin{align}
\frac{u_{\ivec, \jvec}^{n+1} - u_{\ivec, \jvec}^{n}}{\Delta t} &= \theta F_{\ivec, \jvec}^{n+1} + (1 - \theta) F_{\ivec, \jvec}^{n} \ ,
\label{eq:theta_rule}
\end{align} %
where $\theta \in [0, 1]$.
To simplify notation and avoid confusion of indices with the imaginary number $i$,
we have used the notation $\ivec, \jvec$ in subscript to indicate the commonly named indices $i, j$
in x- and y-direction. In addition, the superscript $n, n+1$ indicate position in time.
We get the Crank-Nicolson method (CN) when $\theta = 1/2$ gives Crank-Nicolson
\begin{align}
\frac{u_{\ivec, \jvec}^{n+1} - u_{\ivec, \jvec}^{n}}{\Delta t} &= \frac{1}{2} \bigg[ F_{\ivec, \jvec}^{n+1} + F_{\ivec, \jvec}^{n} \bigg] \ .
\label{eq:crank_nicolson_method}
\end{align} %
Using CN, we derive the discretized Schrödinger equation given by
\begin{align*}
& u_{\ivec, \jvec}^{n+1} - r \big[ u_{\ivec+1, \jvec}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec-1, \jvec}^{n+1} \big] \\
& - r \big[ u_{\ivec, \jvec+1}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec, \jvec-1}^{n+1} \big] + \frac{i \Delta t}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n+1} \\
&= u_{\ivec, \jvec}^{n} + r \big[ u_{\ivec+1, \jvec}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec-1, \jvec}^{n} \big] \\
& \quad + r \big[ u_{\ivec, \jvec+1}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec, \jvec-1}^{n} \big] - \frac{i \Delta t}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n} \numberthis \ ,
\label{eq:schrodinger_discretized}
\end{align*} %
where $r$ is defined as
\begin{align*}
r \equiv \frac{i \Delta t}{2 \Delta h^{2}}
\end{align*} %
The full derivation of both Equation \eqref{eq:crank_nicolson_method} and Equation \eqref{eq:schrodinger_discretized}
can be found in Appendix \ref{ap:crank_nicolson}.
\subsection{The double-slit experiment}\label{ssec:double_slit} %
Thomas Young first performed the double-slit experiment in 1801 to demonstrate the
principle of interference of light \cite{britannica:2023:young}, while postulating
light as waves rather than particles. The double-slit experiment gives a diffraction
pattern, where constructive interference of light result in bright spots, and destructive
interference result in dark spots.
% Something about Heisenberg uncertainty principle
\subsection{Implementation}\label{ssec:implementation} %
% Add tables of parameters used, initial conditions, notation etc.
A, B are sparse csc matrix
- theory of csc matrix?
% \begin{equation*}
% \begin{pNiceArray}{ccc|ccc}
% \bullet & \bullet & & \bullet & & & & & \\
% \bullet & \bullet & \bullet & & \bullet & & & & \\
% & \bullet & \bullet & & & \bullet & & &
% \end{pNiceArray}
% \end{equation*}
We use Dirichlet boundary conditions, as given in Table \ref{tab:boundary_conditions},
which allows us to express Equation \eqref{eq:schrodinger_discretized} as a matrix
equation
\begin{align}
A u^{n+1} = B u^{n} \ .
\end{align}
Here, both $u^{n+1}$ and $u^{n}$ are column vectors containing the internal points
of the $xy$ grid at time step $n+1$ and $n$, respectively. Since we have $M$ points
in $x$- and $y$-direction, we have $M-2$ internal points. Both $u$ vectors have
length $(M-2)^{2}$, and the matrices $A$ and $B$ have size $(M-2)^{2} \times (M-2)^{2}$.
The matrices can be decomposed as submatrices of size $(M-2) \times (M-2)$, with
the following pattern
\begin{align*}
A, B =
\begin{bmatrix}
\begin{matrix}
\bullet & \bullet & \phantom{\bullet} \\
\bullet & \bullet & \bullet \\
\phantom{\bullet} & \bullet & \bullet
\end{matrix}
& \rvline &
\begin{matrix}
\bullet & \phantom{\bullet} & \phantom{\bullet} \\
\phantom{\bullet} & \bullet & \phantom{\bullet} \\
\phantom{\bullet} & \phantom{\bullet} & \bullet
\end{matrix}
& \rvline &
\begin{matrix}
\phantom{\bullet} & \phantom{\bullet} & \phantom{\bullet} \\
\phantom{\bullet} & \phantom{\bullet} & \phantom{\bullet} \\
\phantom{\bullet} & \phantom{\bullet} & \phantom{\bullet}
\end{matrix} \\
\hline
\begin{matrix}
\bullet & \phantom{\bullet} & \phantom{\bullet} \\
\phantom{\bullet} & \bullet & \phantom{\bullet} \\
\phantom{\bullet} & \phantom{\bullet} & \bullet
\end{matrix}
& \rvline &
\begin{matrix}
\bullet & \bullet & \phantom{\bullet} \\
\bullet & \bullet & \bullet \\
\phantom{\bullet} & \bullet & \bullet
\end{matrix}
& \rvline &
\begin{matrix}
\bullet & \phantom{\bullet} & \phantom{\bullet} \\
\phantom{\bullet} & \bullet & \phantom{\bullet} \\
\phantom{\bullet} & \phantom{\bullet} & \bullet
\end{matrix} \\
\hline
\begin{matrix}
\phantom{\bullet} & \phantom{\bullet} & \phantom{\bullet} \\
\phantom{\bullet} & \phantom{\bullet} & \phantom{\bullet} \\
\phantom{\bullet} & \phantom{\bullet} & \phantom{\bullet}
\end{matrix}
& \rvline &
\begin{matrix}
\bullet & \phantom{\bullet} & \phantom{\bullet} \\
\phantom{\bullet} & \bullet & \phantom{\bullet} \\
\phantom{\bullet} & \phantom{\bullet} & \bullet
\end{matrix}
& \rvline &
\begin{matrix}
\bullet & \bullet & \phantom{\bullet} \\
\bullet & \bullet & \bullet \\
\phantom{\bullet} & \bullet & \bullet
\end{matrix}
\end{bmatrix}
\end{align*}
To fill the matrices $A$ and $B$, we used
\begin{align*}
a_{k} &= 1 + 4r + \frac{i \Delta t}{2} v_{\ivec, \jvec} \\
b_{k} &= 1 - 4r - \frac{i \Delta t}{2} v_{\ivec, \jvec} \ .
\end{align*}
An example of filled matrices can be found in Appendix \ref{ap:matrix_structure}.
Notations:
In addition, we use an equal step size in x- and y-direction, $h$ such that
\begin{align*}
x \in [0, 1] && x \rightarrow x_{\ivec} = \ivec h && \ivec = 0, 1, \dots, M-1 \\
y \in [0, 1] && y \rightarrow y_{\jvec} = \jvec h && \jvec = 0, 1, \dots, M-1 \\
t \in [0, T] && t \rightarrow t_{n} = n \Delta t && n = 0, 1, \dots, N_{t}-1
\end{align*}
And simplify indices such that
\begin{align*}
u(x, y, t) \rightarrow u(\ivec h, \jvec h, n \Delta t) \equiv u_{\ivec, \jvec}^{n} \\
v(x, y) \rightarrow u(\ivec h, \jvec h) \equiv v_{\ivec, \jvec}
\end{align*}
which gives a matrix $U^{n}$ that contains elements $u_{\ivec, \jvec}^{n}$, and
a matrix $V$ that contains elements $v_{\ivec, \jvec}$.
\begin{table}[H]
\centering
\begin{tabular}{l r} % @{\extracolsep{\fill}}
\hline
Position & Value \\
\hline
$u(x=0, y, t)$ & $0$ \\
$u(x=1, y, t)$ & $0$ \\
$u(x, y=0, t)$ & $0$ \\
$u(x, y=1, t)$ & $0$ \\
\hline
\end{tabular}
\caption{Boundary conditions in the xy-plane, also known as Dirichlet boundary conditions.}
\label{tab:boundary_conditions}
\end{table}
For the general setup of the wall, we used
\begin{table}[H]
\centering
\begin{tabular}{l r} % @{\extracolsep{\fill}}
\hline
Parameter & Value \\
\hline
Wall thickness & $0.02$ \\
Wall position & $0.5$ \\
Separator length & $0.05$ \\
Slit aperture & $0.05$ \\
\hline
\end{tabular}
\caption{Wall setup.}
\label{tab:wall_setup}
\end{table}
\begin{table}[H]
\centering
\begin{tabular}{l r r} % @{\extracolsep{\fill}}
\hline
Simulation & $1$ & $2$ \\
\hline
$h$ & $0.005$ & $0.005$ \\
$\Delta t$ & $2.5 \times 10^{-5}$ & $2.5 \times 10^{-5}$ \\
$T$ & $0.008$ & $0.002$ \\
$x_{c}$ & $0.25$ & $0.25$ \\
$\sigma_{x}$ & $0.05$ & $0.05$ \\
$p_{x}$ & $200$ & $200$ \\
$y_{c}$ & $0.5$ & $0.5$ \\
$\sigma_{y}$ & $0.05$ & $0.20$ \\
$p_{y}$ & $0$ & $0$ \\
$v_{0}$ & $0$ & $1 \times10^{10}$ \\
\hline
\end{tabular}
\caption{Wall setup.}
\label{tab:sim_setup}
\end{table}
\subsection{Tools}\label{ssec:tools} %
The double-slit experiment is implemented in C++. We use the Python library
\verb|matplotlib| \cite{hunter:2007:matplotlib} to produce all the plots, and
\verb|seaborn| \cite{waskom:2021:seaborn} to set the theme in the figures.
\end{document}