Project-5/python_scripts/colormap.py

97 lines
2.8 KiB
Python

import ast
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
sns.set_theme()
params = {
"font.family": "Serif",
"font.serif": "Roman",
"text.usetex": True,
"axes.titlesize": "large",
"axes.labelsize": "large",
"xtick.labelsize": "large",
"ytick.labelsize": "large",
"legend.fontsize": "medium",
}
plt.rcParams.update(params)
def plot():
ticks = [0, 0.25, 0.5, 0.75, 1.0]
with open("data/color_map.txt") as f:
lines = f.readlines()
size = int(lines[0])
for i, line in enumerate(lines[1:]):
# Create figures for each plot
fig1, ax1 = plt.subplots()
fig2, ax2 = plt.subplots()
fig3, ax3 = plt.subplots()
arr = line.strip().split("\t")
arr = np.asarray(list(map(lambda x: complex(*ast.literal_eval(x)), arr)))
# Reshape and transpose array
arr = arr.reshape(size, size).T
# Plot color maps
color_map1 = ax1.imshow(
np.multiply(arr, arr.conj()).real,
interpolation="nearest",
cmap=sns.color_palette("mako", as_cmap=True),
extent=[0, 1.0, 0, 1.0]
)
color_map2 = ax2.imshow(
arr.real,
interpolation="nearest",
cmap=sns.color_palette("mako", as_cmap=True),
extent=[0, 1.0, 0, 1.0]
)
color_map3 = ax3.imshow(
arr.imag,
interpolation="nearest",
cmap=sns.color_palette("mako", as_cmap=True),
extent=[0, 1.0, 0, 1.0]
)
# Create color bar
fig1.colorbar(color_map1, ax=ax1)
fig2.colorbar(color_map2, ax=ax2)
fig3.colorbar(color_map3, ax=ax3)
# Remove grids
ax1.grid(False)
ax2.grid(False)
ax3.grid(False)
# Set custom ticks
ax1.set_xticks(ticks)
ax1.set_yticks(ticks)
ax2.set_xticks(ticks)
ax2.set_yticks(ticks)
ax3.set_xticks(ticks)
ax3.set_yticks(ticks)
# Set labels
ax1.set_xlabel("x-axis")
ax1.set_ylabel("y-axis")
ax2.set_xlabel("x-axis")
ax2.set_ylabel("y-axis")
ax3.set_xlabel("x-axis")
ax3.set_ylabel("y-axis")
# Save the figures
fig1.savefig(f"latex/images/color_map_{i}_prob.pdf", bbox_inches="tight")
fig2.savefig(f"latex/images/color_map_{i}_real.pdf", bbox_inches="tight")
fig3.savefig(f"latex/images/color_map_{i}_imag.pdf", bbox_inches="tight")
# Close figures
plt.close(fig1)
plt.close(fig2)
plt.close(fig3)
if __name__ == "__main__":
plot()