49 lines
3.1 KiB
TeX
49 lines
3.1 KiB
TeX
\documentclass[../schrodinger_simulation.tex]{subfiles}
|
|
|
|
\begin{document}
|
|
\appendix
|
|
\section{The Crank-Nicholson method}\label{ap:crank_nicolson}
|
|
The Crank-Nicolson \(CN\) approach considers both the forward difference, an explicit scheme,
|
|
\begin{equation*}
|
|
\frac{u_{\ivec, \jvec}^{n+1} - u_{\ivec, \jvec}^{n}}{\Delta t} = F_{\ivec, \jvec}^{n} \ ,
|
|
\end{equation*}
|
|
and the backward difference, an implicit scheme,
|
|
\begin{equation*}
|
|
\frac{u_{\ivec, \jvec}^{n+1} - u_{\ivec, \jvec}^{n}}{\Delta t} = F_{\ivec, \jvec}^{n+1} \ .
|
|
\end{equation*}
|
|
The result is a linear combination of the explicit and implicit scheme, given by
|
|
\begin{align*}
|
|
\frac{u_{\ivec, \jvec}^{n+1} - u_{\ivec, \jvec}^{n}}{\Delta t} &= \theta F_{\ivec, \jvec}^{n+1} + (1 - \theta) F_{\ivec, \jvec}^{n} \ .
|
|
\end{align*}
|
|
The parameter $\theta$ is introduced for a general approach, however, for CN $\theta = 1/2$.
|
|
\begin{align*}
|
|
\frac{u_{\ivec, \jvec}^{n+1} - u_{\ivec, \jvec}^{n}}{\Delta t} &= \frac{1}{2} \bigg[ F_{\ivec, \jvec}^{n+1} + F_{\ivec, \jvec}^{n} \bigg] \\
|
|
\end{align*}
|
|
|
|
We need the first derivative in respect to both time and position, as well as the second derivative in respect to position. Taylor expanding will result in a discretized version, assume this is known...
|
|
|
|
Schrödinger contain $i$ at the lhs, factor it as
|
|
\begin{align*}
|
|
\frac{u_{\ivec, \jvec}^{n+1} - u_{\ivec, \jvec}^{n}}{\Delta t} &= \frac{1}{2i} \bigg[ F_{\ivec, \jvec}^{n+1} + F_{\ivec, \jvec}^{n} \bigg] \\
|
|
&= -\frac{i}{2} \bigg[ F_{\ivec, \jvec}^{n+1} + F_{\ivec, \jvec}^{n} \bigg] & \text{, where $\frac{1}{i} = -i$}
|
|
\end{align*}
|
|
|
|
Using Equation \eqref{eq:schrodinger_dimensionless}, we get
|
|
\begin{align*}
|
|
u_{\ivec, \jvec}^{n+1} - u_{\ivec, \jvec}^{n} & -\frac{i \Delta t}{2} \bigg[ F_{\ivec, \jvec}^{n+1} + F_{\ivec, \jvec}^{n} \bigg] \\
|
|
&= -\frac{i \Delta t}{2} \bigg[ - \frac{u_{\ivec+1, \jvec}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec-1, \jvec}^{n+1}}{2 \Delta x^{2}} \\
|
|
& \quad - \frac{u_{\ivec, \jvec+1}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec, \jvec-1}^{n+1}}{2 \Delta y^{2}} + \frac{1}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n+1} \\
|
|
& \quad - \frac{u_{\ivec+1, \jvec}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec-1, \jvec}^{n}}{2 \Delta x^{2}} \\
|
|
& \quad - \frac{u_{\ivec, \jvec+1}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec, \jvec-1}^{n}}{2 \Delta y^{2}} + \frac{1}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n} \bigg] \\
|
|
\end{align*}
|
|
We rewrite the expression,
|
|
\begin{align*}
|
|
& u_{\ivec, \jvec}^{n+1} - \frac{i \Delta t}{2 \Delta x^{2}} \big[ u_{\ivec+1, \jvec}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec-1, \jvec}^{n+1} \big] \\
|
|
& - \frac{i \Delta t}{2 \Delta y^{2}} \big[ u_{\ivec, \jvec+1}^{n+1} - 2u_{\ivec, \jvec}^{n+1} + u_{\ivec, \jvec-1}^{n+1} \big] + \frac{i \Delta t}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n+1} \\
|
|
&= u_{\ivec, \jvec}^{n} + \frac{i \Delta t}{2 \Delta x^{2}} \big[ u_{\ivec+1, \jvec}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec-1, \jvec}^{n} \big] \\
|
|
& \quad + \frac{i \Delta t}{2 \Delta y^{2}} \big[ u_{\ivec, \jvec+1}^{n} - 2u_{\ivec, \jvec}^{n} + u_{\ivec, \jvec-1}^{n} \big] - \frac{i \Delta t}{2} v_{\ivec, \jvec} u_{\ivec, \jvec}^{n} \\
|
|
\end{align*}
|
|
|
|
|
|
\end{document}
|