Improve the code.
- Add a docstring. - Add type hinting. - Change algorithm from steepest ascent to simple hill climbing.
This commit is contained in:
parent
667c19ecc3
commit
a060f93554
@ -1,53 +1,66 @@
|
||||
import copy
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import copy
|
||||
|
||||
from common import plot_plan, read_data
|
||||
from common import indexes_to_cities, plot_plan, read_data
|
||||
|
||||
original_perm = None
|
||||
|
||||
def hill_climbing(distances: npt.NDArray) -> Tuple[float, npt.NDArray]:
|
||||
size = len(distances)
|
||||
perm = np.arange(size)
|
||||
np.random.shuffle(perm)
|
||||
"""A simple hill climbing algorithm.
|
||||
|
||||
The algorithm starts on a random permutation and attempts to improve
|
||||
the circuit by trying to switch neighboring elements. Each iteration
|
||||
tries to switch adjacent neighbors and sees which one yields the largest
|
||||
improvement.
|
||||
|
||||
Args:
|
||||
distances npt.NDArray: A matrix containing the distances between cities.
|
||||
|
||||
Returns:
|
||||
Tuple[float, npt.NDArray] A tuple containing the distance of the
|
||||
solution and the solution itself.
|
||||
|
||||
"""
|
||||
|
||||
size: int = len(distances) # The size of the permutation array
|
||||
perm: npt.NDArray = np.arange(size) # Create an array from 0..size
|
||||
|
||||
np.random.shuffle(perm) # Get random permutation
|
||||
|
||||
# Get the distance of the random permutation
|
||||
current_distance: float = np.sum(
|
||||
[distances[perm[i - 1], perm[i]] for i in range(size)]
|
||||
)
|
||||
|
||||
found_improvement: bool = True
|
||||
|
||||
print(perm)
|
||||
global original_perm
|
||||
original_perm = copy.deepcopy(perm)
|
||||
current_route: float = np.sum([distances[perm[i - 1], perm[i]] for i in range(size)])
|
||||
found_improvement = True
|
||||
while found_improvement:
|
||||
found_improvement = False
|
||||
tmp_improvement: float = current_route
|
||||
improvement_index: int = -1
|
||||
|
||||
found_improvement = False # Assume we haven't found an improvement
|
||||
tmp_distance: float = current_distance
|
||||
|
||||
# Try to find an improvement
|
||||
for i in range(size):
|
||||
perm[i - 1], perm[i] = perm[i], perm[i - 1]
|
||||
tmp_route: float = np.sum([distances[perm[i - 1], perm[i]] for i in range(size)])
|
||||
if tmp_route < tmp_improvement:
|
||||
tmp_improvement = tmp_route
|
||||
improvement_index = i
|
||||
found_improvement = True
|
||||
perm[[i - 1, i]] = perm[[i, i - 1]] # Swap i - 1 and i
|
||||
|
||||
perm[i - 1], perm[i] = perm[i], perm[i - 1]
|
||||
|
||||
if found_improvement:
|
||||
current_route = tmp_improvement
|
||||
perm[improvement_index - 1], perm[improvement_index] = (
|
||||
perm[improvement_index],
|
||||
perm[improvement_index - 1],
|
||||
tmp_distance: float = np.sum(
|
||||
[distances[perm[i - 1], perm[i]] for i in range(size)]
|
||||
)
|
||||
|
||||
print(perm)
|
||||
if tmp_distance < current_distance:
|
||||
current_distance = tmp_distance
|
||||
found_improvement = True
|
||||
break
|
||||
|
||||
return (current_route, perm)
|
||||
perm[[i - 1, i]] = perm[[i, i - 1]] # Swap back i - 1 and i
|
||||
|
||||
return (current_distance, perm)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cities, data = read_data("./european_cities.csv")
|
||||
distance, perm = hill_climbing(data[:10,:10])
|
||||
|
||||
plot_plan(list(map(lambda i: cities[i], list(perm))))
|
||||
plot_plan(list(map(lambda i: cities[i], list(original_perm))))
|
||||
distance, perm = hill_climbing(data[:10, :10])
|
||||
|
||||
plot_plan(indexes_to_cities(perm, cities))
|
||||
|
||||
Loading…
Reference in New Issue
Block a user