Compare commits
8 Commits
258b59c7a4
...
a060f93554
| Author | SHA1 | Date | |
|---|---|---|---|
| a060f93554 | |||
| 667c19ecc3 | |||
| 375e2066b4 | |||
| 2ee3f59702 | |||
| b1c6ad01a0 | |||
| 0e7965f06a | |||
| 4455a4e6f4 | |||
| 309cd59e7d |
97
common.py
97
common.py
@ -1,49 +1,96 @@
|
||||
from typing import List, Tuple
|
||||
from typing import Dict, List, Tuple, Union
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Data given by the assignment
|
||||
city_coords = {
|
||||
"Barcelona": [2.154007, 41.390205], "Belgrade": [20.46, 44.79], "Berlin": [13.40, 52.52],
|
||||
"Brussels": [4.35, 50.85], "Bucharest": [26.10, 44.44], "Budapest": [19.04, 47.50],
|
||||
"Copenhagen": [12.57, 55.68], "Dublin": [-6.27, 53.35], "Hamburg": [9.99, 53.55],
|
||||
"Istanbul": [28.98, 41.02], "Kyiv": [30.52, 50.45], "London": [-0.12, 51.51],
|
||||
"Madrid": [-3.70, 40.42], "Milan": [9.19, 45.46], "Moscow": [37.62, 55.75],
|
||||
"Munich": [11.58, 48.14], "Paris": [2.35, 48.86], "Prague": [14.42, 50.07],
|
||||
"Rome": [12.50, 41.90], "Saint Petersburg": [30.31, 59.94], "Sofia": [23.32, 42.70],
|
||||
"Stockholm": [18.06, 60.33], "Vienna": [16.36, 48.21], "Warsaw": [21.02, 52.24]}
|
||||
city_coords: Dict = {
|
||||
"Barcelona": [2.154007, 41.390205],
|
||||
"Belgrade": [20.46, 44.79],
|
||||
"Berlin": [13.40, 52.52],
|
||||
"Brussels": [4.35, 50.85],
|
||||
"Bucharest": [26.10, 44.44],
|
||||
"Budapest": [19.04, 47.50],
|
||||
"Copenhagen": [12.57, 55.68],
|
||||
"Dublin": [-6.27, 53.35],
|
||||
"Hamburg": [9.99, 53.55],
|
||||
"Istanbul": [28.98, 41.02],
|
||||
"Kyiv": [30.52, 50.45],
|
||||
"London": [-0.12, 51.51],
|
||||
"Madrid": [-3.70, 40.42],
|
||||
"Milan": [9.19, 45.46],
|
||||
"Moscow": [37.62, 55.75],
|
||||
"Munich": [11.58, 48.14],
|
||||
"Paris": [2.35, 48.86],
|
||||
"Prague": [14.42, 50.07],
|
||||
"Rome": [12.50, 41.90],
|
||||
"Saint Petersburg": [30.31, 59.94],
|
||||
"Sofia": [23.32, 42.70],
|
||||
"Stockholm": [18.06, 60.33],
|
||||
"Vienna": [16.36, 48.21],
|
||||
"Warsaw": [21.02, 52.24],
|
||||
}
|
||||
|
||||
def plot_plan(city_order: List[str]) -> None:
|
||||
europe_map = plt.imread('map.png')
|
||||
fig, ax = plt.subplots(figsize=(10, 10))
|
||||
ax.imshow(europe_map, extent=[-14.56, 38.43, 37.697 + 0.3, 64.344 + 2.0], aspect="auto")
|
||||
|
||||
def plot_plan(city_order: Union[List[str], npt.NDArray]) -> None:
|
||||
"""A function that plots the circuit given by city_order.
|
||||
|
||||
This function was given in the assignment from 2024.
|
||||
|
||||
Args:
|
||||
city_order (List[str]): A list of cities in the order to be plotted.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
|
||||
europe_map = plt.imread("map.png")
|
||||
_, ax = plt.subplots(figsize=(10, 10))
|
||||
ax.imshow(
|
||||
europe_map, extent=[-14.56, 38.43, 37.697 + 0.3, 64.344 + 2.0], aspect="auto"
|
||||
)
|
||||
|
||||
# Map (long, lat) to (x, y) for plotting
|
||||
for index in range(len(city_order) - 1):
|
||||
current_city_coords = city_coords[city_order[index]]
|
||||
next_city_coords = city_coords[city_order[index+1]]
|
||||
next_city_coords = city_coords[city_order[index + 1]]
|
||||
x, y = current_city_coords[0], current_city_coords[1]
|
||||
#Plotting a line to the next city
|
||||
# Plotting a line to the next city
|
||||
next_x, next_y = next_city_coords[0], next_city_coords[1]
|
||||
plt.plot([x, next_x], [y, next_y])
|
||||
|
||||
plt.plot(x, y, 'ok', markersize=5)
|
||||
plt.plot(x, y, "ok", markersize=5)
|
||||
plt.text(x, y, str(index), fontsize=12)
|
||||
#Finally, plotting from last to first city
|
||||
# Finally, plotting from last to first city
|
||||
first_city_coords = city_coords[city_order[0]]
|
||||
first_x, first_y = first_city_coords[0], first_city_coords[1]
|
||||
plt.plot([next_x, first_x], [next_y, first_y])
|
||||
#Plotting a marker and index for the final city
|
||||
plt.plot(next_x, next_y, 'ok', markersize=5)
|
||||
plt.text(next_x, next_y, str(index+1), fontsize=12)
|
||||
# Plotting a marker and index for the final city
|
||||
plt.plot(next_x, next_y, "ok", markersize=5)
|
||||
plt.text(next_x, next_y, str(index + 1), fontsize=12)
|
||||
plt.show()
|
||||
|
||||
|
||||
def indexes_to_cities(indexes: npt.NDArray, cities: npt.NDArray) -> npt.NDArray:
|
||||
"""Create an array of cities from indeces in a specific order.
|
||||
|
||||
Args:
|
||||
indexes (npt.NDArray): An array of city indexes.
|
||||
cities (npt.NDArray): An array of cities.
|
||||
|
||||
Returns:
|
||||
npt.NDArray An array of cities in the same order as given in indexes.
|
||||
"""
|
||||
|
||||
return np.array([cities[i] for i in indexes])
|
||||
|
||||
|
||||
def read_data(file_path: str) -> Tuple[npt.NDArray, npt.NDArray]:
|
||||
""" Read the city data from a file given and return 2 arrays.
|
||||
"""Read the city data from a file given and return 2 arrays.
|
||||
|
||||
The data being read should be separated by semicolons,
|
||||
and the first line should be a list of cities while the
|
||||
and the first line should be a list of cities while the
|
||||
rest of the file should contain the data. The resulting
|
||||
array for the data should be an NxN matrix.
|
||||
|
||||
@ -55,6 +102,7 @@ def read_data(file_path: str) -> Tuple[npt.NDArray, npt.NDArray]:
|
||||
and the data associated with it.
|
||||
|
||||
"""
|
||||
|
||||
cities = None
|
||||
data = []
|
||||
with open(file_path, "r") as f:
|
||||
@ -67,6 +115,7 @@ def read_data(file_path: str) -> Tuple[npt.NDArray, npt.NDArray]:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# A test program to see that the file is read correctly.
|
||||
cities, data = read_data("./european_cities.csv")
|
||||
print(cities)
|
||||
print(data)
|
||||
|
||||
@ -1,13 +1,14 @@
|
||||
import time
|
||||
from itertools import permutations
|
||||
from typing import Callable, Tuple
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
|
||||
from common import plot_plan, read_data
|
||||
|
||||
|
||||
def exhaustive_search(distances: npt.NDArray) -> Tuple[float, Tuple]:
|
||||
def exhaustive_search(distances: npt.NDArray) -> Tuple[float, npt.NDArray]:
|
||||
"""An implementation of exhaustive search.
|
||||
|
||||
This implementation takes a permutation iterator, then maps each
|
||||
@ -19,8 +20,8 @@ def exhaustive_search(distances: npt.NDArray) -> Tuple[float, Tuple]:
|
||||
distances (npt.NDArray): An array containing distances to travel.
|
||||
|
||||
Returns:
|
||||
A tuple containing the shortest travel distance and its corresponding
|
||||
permutation.
|
||||
Tuple[float, npt.NDArray] A tuple containing the shortest travel
|
||||
distance and its corresponding permutation.
|
||||
"""
|
||||
|
||||
size = len(distances)
|
||||
@ -29,7 +30,7 @@ def exhaustive_search(distances: npt.NDArray) -> Tuple[float, Tuple]:
|
||||
map( # Map the permutation array to contain tuples (distance, permutation)
|
||||
lambda perm: (
|
||||
sum([distances[perm[i - 1], perm[i]] for i in range(size)]),
|
||||
perm,
|
||||
np.array(perm),
|
||||
),
|
||||
permutations(range(size)),
|
||||
),
|
||||
@ -53,7 +54,7 @@ if __name__ == "__main__":
|
||||
print(f"time to find solution: {time_elapsed_ms:>12.6f}ms\n")
|
||||
|
||||
|
||||
""" Running example
|
||||
"""Running example
|
||||
|
||||
oblig1 on main [?] via 🐍 v3.12.6 took 7s
|
||||
❯ python exhaustive_search.py
|
||||
|
||||
@ -1,53 +1,66 @@
|
||||
import copy
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
import numpy.typing as npt
|
||||
import copy
|
||||
|
||||
from common import plot_plan, read_data
|
||||
from common import indexes_to_cities, plot_plan, read_data
|
||||
|
||||
original_perm = None
|
||||
|
||||
def hill_climbing(distances: npt.NDArray) -> Tuple[float, npt.NDArray]:
|
||||
size = len(distances)
|
||||
perm = np.arange(size)
|
||||
np.random.shuffle(perm)
|
||||
"""A simple hill climbing algorithm.
|
||||
|
||||
The algorithm starts on a random permutation and attempts to improve
|
||||
the circuit by trying to switch neighboring elements. Each iteration
|
||||
tries to switch adjacent neighbors and sees which one yields the largest
|
||||
improvement.
|
||||
|
||||
Args:
|
||||
distances npt.NDArray: A matrix containing the distances between cities.
|
||||
|
||||
Returns:
|
||||
Tuple[float, npt.NDArray] A tuple containing the distance of the
|
||||
solution and the solution itself.
|
||||
|
||||
"""
|
||||
|
||||
size: int = len(distances) # The size of the permutation array
|
||||
perm: npt.NDArray = np.arange(size) # Create an array from 0..size
|
||||
|
||||
np.random.shuffle(perm) # Get random permutation
|
||||
|
||||
# Get the distance of the random permutation
|
||||
current_distance: float = np.sum(
|
||||
[distances[perm[i - 1], perm[i]] for i in range(size)]
|
||||
)
|
||||
|
||||
found_improvement: bool = True
|
||||
|
||||
print(perm)
|
||||
global original_perm
|
||||
original_perm = copy.deepcopy(perm)
|
||||
current_route: float = np.sum([distances[perm[i - 1], perm[i]] for i in range(size)])
|
||||
found_improvement = True
|
||||
while found_improvement:
|
||||
found_improvement = False
|
||||
tmp_improvement: float = current_route
|
||||
improvement_index: int = -1
|
||||
|
||||
found_improvement = False # Assume we haven't found an improvement
|
||||
tmp_distance: float = current_distance
|
||||
|
||||
# Try to find an improvement
|
||||
for i in range(size):
|
||||
perm[i - 1], perm[i] = perm[i], perm[i - 1]
|
||||
tmp_route: float = np.sum([distances[perm[i - 1], perm[i]] for i in range(size)])
|
||||
if tmp_route < tmp_improvement:
|
||||
tmp_improvement = tmp_route
|
||||
improvement_index = i
|
||||
found_improvement = True
|
||||
perm[[i - 1, i]] = perm[[i, i - 1]] # Swap i - 1 and i
|
||||
|
||||
perm[i - 1], perm[i] = perm[i], perm[i - 1]
|
||||
|
||||
if found_improvement:
|
||||
current_route = tmp_improvement
|
||||
perm[improvement_index - 1], perm[improvement_index] = (
|
||||
perm[improvement_index],
|
||||
perm[improvement_index - 1],
|
||||
tmp_distance: float = np.sum(
|
||||
[distances[perm[i - 1], perm[i]] for i in range(size)]
|
||||
)
|
||||
|
||||
print(perm)
|
||||
if tmp_distance < current_distance:
|
||||
current_distance = tmp_distance
|
||||
found_improvement = True
|
||||
break
|
||||
|
||||
return (current_route, perm)
|
||||
perm[[i - 1, i]] = perm[[i, i - 1]] # Swap back i - 1 and i
|
||||
|
||||
return (current_distance, perm)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
cities, data = read_data("./european_cities.csv")
|
||||
distance, perm = hill_climbing(data[:10,:10])
|
||||
|
||||
plot_plan(list(map(lambda i: cities[i], list(perm))))
|
||||
plot_plan(list(map(lambda i: cities[i], list(original_perm))))
|
||||
distance, perm = hill_climbing(data[:10, :10])
|
||||
|
||||
plot_plan(indexes_to_cities(perm, cities))
|
||||
|
||||
Loading…
Reference in New Issue
Block a user