Fixed memory management for GPU, now working with OpenMP and CUDA

This commit is contained in:
Matthew Martineau 2016-05-06 13:17:04 +01:00
parent 57189e7ca5
commit 1a60f130eb
2 changed files with 41 additions and 15 deletions

View File

@ -16,21 +16,36 @@ RAJAStream<T>::RAJAStream(const unsigned int ARRAY_SIZE, const int device_index)
{
RangeSegment seg(0, ARRAY_SIZE);
index_set.push_back(seg);
#ifdef RAJA_TARGET_CPU
d_a = new T[ARRAY_SIZE];
d_b = new T[ARRAY_SIZE];
d_c = new T[ARRAY_SIZE];
#else
cudaMallocManaged((void**)&d_a, sizeof(T)*ARRAY_SIZE, cudaMemAttachGlobal);
cudaMallocManaged((void**)&d_b, sizeof(T)*ARRAY_SIZE, cudaMemAttachGlobal);
cudaMallocManaged((void**)&d_c, sizeof(T)*ARRAY_SIZE, cudaMemAttachGlobal);
cudaDeviceSynchronize();
#endif
}
template <class T>
RAJAStream<T>::~RAJAStream()
{
#ifdef RAJA_TARGET_CPU
delete[] d_a;
delete[] d_b;
delete[] d_c;
#else
cudaFree(d_a);
cudaFree(d_b);
cudaFree(d_c);
#endif
}
template <class T>
void RAJAStream<T>::write_arrays(const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c)
void RAJAStream<T>::write_arrays(
const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c)
{
std::copy(a.begin(), a.end(), d_a);
std::copy(b.begin(), b.end(), d_b);
@ -38,48 +53,59 @@ void RAJAStream<T>::write_arrays(const std::vector<T>& a, const std::vector<T>&
}
template <class T>
void RAJAStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
void RAJAStream<T>::read_arrays(
std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
{
std::copy(d_a, d_a + array_size - 1, a.data());
std::copy(d_b, d_b + array_size - 1, b.data());
std::copy(d_c, d_c + array_size - 1, c.data());
std::copy(d_a, d_a + array_size, a.data());
std::copy(d_b, d_b + array_size, b.data());
std::copy(d_c, d_c + array_size, c.data());
}
template <class T>
void RAJAStream<T>::copy()
{
T* a = d_a;
T* c = d_c;
forall<policy>(index_set, [=] RAJA_DEVICE (int index)
{
d_c[index] = d_a[index];
c[index] = a[index];
});
}
template <class T>
void RAJAStream<T>::mul()
{
T* b = d_b;
T* c = d_c;
const T scalar = 3.0;
forall<policy>(index_set, [=] RAJA_DEVICE (int index)
{
d_b[index] = scalar*d_c[index];
b[index] = scalar*c[index];
});
}
template <class T>
void RAJAStream<T>::add()
{
T* a = d_a;
T* b = d_b;
T* c = d_c;
forall<policy>(index_set, [=] RAJA_DEVICE (int index)
{
d_c[index] = d_a[index] + d_b[index];
c[index] = a[index] + b[index];
});
}
template <class T>
void RAJAStream<T>::triad()
{
T* a = d_a;
T* b = d_b;
T* c = d_c;
const T scalar = 3.0;
forall<policy>(index_set, [=] RAJA_DEVICE (int index)
{
d_a[index] = d_b[index] + scalar*d_c[index];
a[index] = b[index] + scalar*c[index];
});
}

View File

@ -14,15 +14,15 @@
#define IMPLEMENTATION_STRING "RAJA"
#ifdef RAJA_USE_CUDA
const size_t block_size = 128;
typedef RAJA::IndexSet::ExecPolicy<
RAJA::seq_segit,
RAJA::cuda_exec_async<block_size>> policy;
#else
#ifdef RAJA_TARGET_CPU
typedef RAJA::IndexSet::ExecPolicy<
RAJA::seq_segit,
RAJA::omp_parallel_for_exec> policy;
#else
const size_t block_size = 128;
typedef RAJA::IndexSet::ExecPolicy<
RAJA::seq_segit,
RAJA::cuda_exec<block_size>> policy;
#endif
template <class T>