Generalise the run functions to share construction of models and check vectors
An enum is added and set by the command line options to choose the running mode: all 5 kernels or triad only. There is now only one run fuction which call the constructor of each model implementation, calling another routine to run the kernels. The output is then determined by the enum value.
This commit is contained in:
parent
018d8a4510
commit
3deb9f8eff
284
main.cpp
284
main.cpp
@ -48,7 +48,6 @@ int ARRAY_SIZE = 33554432;
|
||||
unsigned int num_times = 100;
|
||||
unsigned int deviceIndex = 0;
|
||||
bool use_float = false;
|
||||
bool triad_only = false;
|
||||
bool output_as_csv = false;
|
||||
bool mibibytes = false;
|
||||
std::string csv_separator = ",";
|
||||
@ -62,6 +61,14 @@ void run();
|
||||
template <typename T>
|
||||
void run_triad();
|
||||
|
||||
// Options for running the benchmark:
|
||||
// - All 5 kernels (Copy, Add, Mul, Triad, Dot).
|
||||
// - Triad only.
|
||||
enum class Benchmark {All, Triad};
|
||||
|
||||
// Selected run options.
|
||||
Benchmark selection = Benchmark::All;
|
||||
|
||||
void parseArguments(int argc, char *argv[]);
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
@ -77,24 +84,91 @@ int main(int argc, char *argv[])
|
||||
<< "Implementation: " << IMPLEMENTATION_STRING << std::endl;
|
||||
}
|
||||
|
||||
// TODO: Fix Kokkos to allow multiple template specializations
|
||||
if (triad_only)
|
||||
{
|
||||
if (use_float)
|
||||
run_triad<float>();
|
||||
else
|
||||
run_triad<double>();
|
||||
}
|
||||
else
|
||||
{
|
||||
if (use_float)
|
||||
run<float>();
|
||||
else
|
||||
run<double>();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
// Run the 5 main kernels
|
||||
template <typename T>
|
||||
std::vector<std::vector<double>> run_all(Stream<T> *stream, T& sum)
|
||||
{
|
||||
|
||||
// List of times
|
||||
std::vector<std::vector<double>> timings(5);
|
||||
|
||||
// Declare timers
|
||||
std::chrono::high_resolution_clock::time_point t1, t2;
|
||||
|
||||
// Main loop
|
||||
for (unsigned int k = 0; k < num_times; k++)
|
||||
{
|
||||
// Execute Copy
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
stream->copy();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
timings[0].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
// Execute Mul
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
stream->mul();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
timings[1].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
// Execute Add
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
stream->add();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
timings[2].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
// Execute Triad
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
stream->triad();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
timings[3].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
// Execute Dot
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
sum = stream->dot();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
timings[4].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
}
|
||||
|
||||
// Compiler should use a move
|
||||
return timings;
|
||||
}
|
||||
|
||||
// Run the Triad kernel
|
||||
template <typename T>
|
||||
std::vector<std::vector<double>> run_triad(Stream<T> *stream)
|
||||
{
|
||||
|
||||
std::vector<std::vector<double>> timings(1);
|
||||
|
||||
// Declare timers
|
||||
std::chrono::high_resolution_clock::time_point t1, t2;
|
||||
|
||||
// Run triad in loop
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
for (unsigned int k = 0; k < num_times; k++)
|
||||
{
|
||||
stream->triad();
|
||||
}
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
|
||||
double runtime = std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count();
|
||||
timings[0].push_back(runtime);
|
||||
|
||||
return timings;
|
||||
}
|
||||
|
||||
|
||||
// Generic run routine
|
||||
// Runs the kernel(s) and prints output.
|
||||
template <typename T>
|
||||
void run()
|
||||
{
|
||||
@ -102,7 +176,14 @@ void run()
|
||||
|
||||
if (!output_as_csv)
|
||||
{
|
||||
if (selection == Benchmark::All)
|
||||
std::cout << "Running kernels " << num_times << " times" << std::endl;
|
||||
else if (selection == Benchmark::Triad)
|
||||
{
|
||||
std::cout << "Running triad " << num_times << " times" << std::endl;
|
||||
std::cout << "Number of elements: " << ARRAY_SIZE << std::endl;
|
||||
}
|
||||
|
||||
|
||||
if (sizeof(T) == sizeof(float))
|
||||
std::cout << "Precision: float" << std::endl;
|
||||
@ -182,49 +263,19 @@ void run()
|
||||
|
||||
stream->init_arrays(startA, startB, startC);
|
||||
|
||||
// Result of the Dot kernel
|
||||
T sum;
|
||||
// Result of the Dot kernel, if used.
|
||||
T sum = 0.0;
|
||||
|
||||
// List of times
|
||||
std::vector<std::vector<double>> timings(5);
|
||||
std::vector<std::vector<double>> timings;
|
||||
|
||||
// Declare timers
|
||||
std::chrono::high_resolution_clock::time_point t1, t2;
|
||||
|
||||
// Main loop
|
||||
for (unsigned int k = 0; k < num_times; k++)
|
||||
switch (selection)
|
||||
{
|
||||
// Execute Copy
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
stream->copy();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
timings[0].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
// Execute Mul
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
stream->mul();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
timings[1].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
// Execute Add
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
stream->add();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
timings[2].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
// Execute Triad
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
stream->triad();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
timings[3].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
// Execute Dot
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
sum = stream->dot();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
timings[4].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
}
|
||||
case Benchmark::All:
|
||||
timings = run_all<T>(stream, sum);
|
||||
break;
|
||||
case Benchmark::Triad:
|
||||
timings = run_triad<T>(stream);
|
||||
};
|
||||
|
||||
// Check solutions
|
||||
// Create host vectors
|
||||
@ -232,6 +283,7 @@ void run()
|
||||
std::vector<T> b(ARRAY_SIZE);
|
||||
std::vector<T> c(ARRAY_SIZE);
|
||||
|
||||
|
||||
stream->read_arrays(a, b, c);
|
||||
check_solution<T>(num_times, a, b, c, sum);
|
||||
|
||||
@ -261,6 +313,8 @@ void run()
|
||||
}
|
||||
|
||||
|
||||
if (selection == Benchmark::All)
|
||||
{
|
||||
|
||||
std::string labels[5] = {"Copy", "Mul", "Add", "Triad", "Dot"};
|
||||
size_t sizes[5] = {
|
||||
@ -271,7 +325,7 @@ void run()
|
||||
2 * sizeof(T) * ARRAY_SIZE
|
||||
};
|
||||
|
||||
for (int i = 0; i < 5; i++)
|
||||
for (int i = 0; i < timings.size(); ++i)
|
||||
{
|
||||
// Get min/max; ignore the first result
|
||||
auto minmax = std::minmax_element(timings[i].begin()+1, timings[i].end());
|
||||
@ -305,118 +359,11 @@ void run()
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
delete stream;
|
||||
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void run_triad()
|
||||
{
|
||||
|
||||
if (!output_as_csv)
|
||||
} else if (selection == Benchmark::Triad)
|
||||
{
|
||||
std::cout << "Running triad " << num_times << " times" << std::endl;
|
||||
std::cout << "Number of elements: " << ARRAY_SIZE << std::endl;
|
||||
|
||||
if (sizeof(T) == sizeof(float))
|
||||
std::cout << "Precision: float" << std::endl;
|
||||
else
|
||||
std::cout << "Precision: double" << std::endl;
|
||||
|
||||
std::streamsize ss = std::cout.precision();
|
||||
if (mibibytes)
|
||||
{
|
||||
std::cout << std::setprecision(1) << std::fixed
|
||||
<< "Array size: " << ARRAY_SIZE*sizeof(T)*pow(2.0, -10.0) << " KiB"
|
||||
<< " (=" << ARRAY_SIZE*sizeof(T)*pow(2.0, -20.0) << " MiB)" << std::endl;
|
||||
std::cout << "Total size: " << 3.0*ARRAY_SIZE*sizeof(T)*pow(2.0, -10.0) << " KiB"
|
||||
<< " (=" << 3.0*ARRAY_SIZE*sizeof(T)*pow(2.0, -20.0) << " MiB)" << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << std::setprecision(1) << std::fixed
|
||||
<< "Array size: " << ARRAY_SIZE*sizeof(T)*1.0E-3 << " KB"
|
||||
<< " (=" << ARRAY_SIZE*sizeof(T)*1.0E-6 << " MB)" << std::endl;
|
||||
std::cout << "Total size: " << 3.0*ARRAY_SIZE*sizeof(T)*1.0E-3 << " KB"
|
||||
<< " (=" << 3.0*ARRAY_SIZE*sizeof(T)*1.0E-6 << " MB)" << std::endl;
|
||||
}
|
||||
std::cout.precision(ss);
|
||||
}
|
||||
|
||||
Stream<T> *stream;
|
||||
|
||||
#if defined(CUDA)
|
||||
// Use the CUDA implementation
|
||||
stream = new CUDAStream<T>(ARRAY_SIZE, deviceIndex);
|
||||
|
||||
#elif defined(HIP)
|
||||
// Use the HIP implementation
|
||||
stream = new HIPStream<T>(ARRAY_SIZE, deviceIndex);
|
||||
|
||||
#elif defined(OCL)
|
||||
// Use the OpenCL implementation
|
||||
stream = new OCLStream<T>(ARRAY_SIZE, deviceIndex);
|
||||
|
||||
#elif defined(USE_RAJA)
|
||||
// Use the RAJA implementation
|
||||
stream = new RAJAStream<T>(ARRAY_SIZE, deviceIndex);
|
||||
|
||||
#elif defined(KOKKOS)
|
||||
// Use the Kokkos implementation
|
||||
stream = new KokkosStream<T>(ARRAY_SIZE, deviceIndex);
|
||||
|
||||
#elif defined(ACC)
|
||||
// Use the OpenACC implementation
|
||||
stream = new ACCStream<T>(ARRAY_SIZE, deviceIndex);
|
||||
|
||||
#elif defined(STD)
|
||||
// Use the STD implementation
|
||||
stream = new STDStream<T>(ARRAY_SIZE, deviceIndex);
|
||||
|
||||
#elif defined(STD20)
|
||||
// Use the C++20 implementation
|
||||
stream = new STD20Stream<T>(ARRAY_SIZE, deviceIndex);
|
||||
|
||||
#elif defined(SYCL)
|
||||
// Use the SYCL implementation
|
||||
stream = new SYCLStream<T>(ARRAY_SIZE, deviceIndex);
|
||||
|
||||
#elif defined(OMP)
|
||||
// Use the OpenMP implementation
|
||||
stream = new OMPStream<T>(ARRAY_SIZE, deviceIndex);
|
||||
|
||||
#endif
|
||||
|
||||
stream->init_arrays(startA, startB, startC);
|
||||
|
||||
// Declare timers
|
||||
std::chrono::high_resolution_clock::time_point t1, t2;
|
||||
|
||||
// Run triad in loop
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
for (unsigned int k = 0; k < num_times; k++)
|
||||
{
|
||||
stream->triad();
|
||||
}
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
|
||||
double runtime = std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count();
|
||||
|
||||
// Check solutions
|
||||
// Create host vectors
|
||||
std::vector<T> a(ARRAY_SIZE);
|
||||
std::vector<T> b(ARRAY_SIZE);
|
||||
std::vector<T> c(ARRAY_SIZE);
|
||||
|
||||
T sum = 0.0;
|
||||
|
||||
stream->read_arrays(a, b, c);
|
||||
check_solution<T>(num_times, a, b, c, sum);
|
||||
|
||||
// Display timing results
|
||||
double total_bytes = 3 * sizeof(T) * ARRAY_SIZE * num_times;
|
||||
double bandwidth = ((mibibytes) ? pow(2.0, -30.0) : 1.0E-9) * (total_bytes / runtime);
|
||||
double bandwidth = ((mibibytes) ? pow(2.0, -30.0) : 1.0E-9) * (total_bytes / timings[0][0]);
|
||||
|
||||
if (output_as_csv)
|
||||
{
|
||||
@ -434,7 +381,7 @@ void run_triad()
|
||||
<< ARRAY_SIZE << csv_separator
|
||||
<< sizeof(T) << csv_separator
|
||||
<< bandwidth << csv_separator
|
||||
<< runtime
|
||||
<< timings[0][0]
|
||||
<< std::endl;
|
||||
}
|
||||
else
|
||||
@ -443,15 +390,18 @@ void run_triad()
|
||||
<< "--------------------------------"
|
||||
<< std::endl << std::fixed
|
||||
<< "Runtime (seconds): " << std::left << std::setprecision(5)
|
||||
<< runtime << std::endl
|
||||
<< timings[0][0] << std::endl
|
||||
<< "Bandwidth (" << ((mibibytes) ? "GiB/s" : "GB/s") << "): "
|
||||
<< std::left << std::setprecision(3)
|
||||
<< bandwidth << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
delete stream;
|
||||
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
void check_solution(const unsigned int ntimes, std::vector<T>& a, std::vector<T>& b, std::vector<T>& c, T& sum)
|
||||
{
|
||||
@ -466,7 +416,7 @@ void check_solution(const unsigned int ntimes, std::vector<T>& a, std::vector<T>
|
||||
for (unsigned int i = 0; i < ntimes; i++)
|
||||
{
|
||||
// Do STREAM!
|
||||
if (!triad_only)
|
||||
if (! (selection == Benchmark::Triad))
|
||||
{
|
||||
goldC = goldA;
|
||||
goldB = scalar * goldC;
|
||||
@ -502,7 +452,7 @@ void check_solution(const unsigned int ntimes, std::vector<T>& a, std::vector<T>
|
||||
<< "Validation failed on c[]. Average error " << errC
|
||||
<< std::endl;
|
||||
// Check sum to 8 decimal places
|
||||
if (!triad_only && errSum > 1.0E-8)
|
||||
if (!(selection == Benchmark::Triad) && errSum > 1.0E-8)
|
||||
std::cerr
|
||||
<< "Validation failed on sum. Error " << errSum
|
||||
<< std::endl << std::setprecision(15)
|
||||
@ -571,7 +521,7 @@ void parseArguments(int argc, char *argv[])
|
||||
}
|
||||
else if (!std::string("--triad-only").compare(argv[i]))
|
||||
{
|
||||
triad_only = true;
|
||||
selection = Benchmark::Triad;
|
||||
}
|
||||
else if (!std::string("--csv").compare(argv[i]))
|
||||
{
|
||||
|
||||
Loading…
Reference in New Issue
Block a user