Add tuned benchmark kernels
Co-authored-by: Nick Curtis <arghdos@users.noreply.github.com>
This commit is contained in:
parent
2c5eee4840
commit
a075455ad4
@ -9,7 +9,32 @@
|
||||
#include "hip/hip_runtime.h"
|
||||
|
||||
#define TBSIZE 1024
|
||||
#define DOT_NUM_BLOCKS 256
|
||||
|
||||
#ifdef NONTEMPORAL
|
||||
template<typename T>
|
||||
__device__ __forceinline__ T load(const T& ref)
|
||||
{
|
||||
return __builtin_nontemporal_load(&ref);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
__device__ __forceinline__ void store(const T& value, T& ref)
|
||||
{
|
||||
__builtin_nontemporal_store(value, &ref);
|
||||
}
|
||||
#else
|
||||
template<typename T>
|
||||
__device__ __forceinline__ T load(const T& ref)
|
||||
{
|
||||
return ref;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
__device__ __forceinline__ void store(const T& value, T& ref)
|
||||
{
|
||||
ref = value;
|
||||
}
|
||||
#endif
|
||||
|
||||
void check_error(void)
|
||||
{
|
||||
@ -23,15 +48,27 @@ void check_error(void)
|
||||
|
||||
template <class T>
|
||||
HIPStream<T>::HIPStream(const int ARRAY_SIZE, const int device_index)
|
||||
: array_size{ARRAY_SIZE},
|
||||
block_count(array_size / (TBSIZE * elements_per_lane * chunks_per_block))
|
||||
{
|
||||
|
||||
// The array size must be divisible by TBSIZE for kernel launches
|
||||
if (ARRAY_SIZE % TBSIZE != 0)
|
||||
std::cerr << "Elements per lane: " << elements_per_lane << std::endl;
|
||||
std::cerr << "Chunks per block: " << chunks_per_block << std::endl;
|
||||
// The array size must be divisible by total number of elements
|
||||
// moved per block for kernel launches
|
||||
if (ARRAY_SIZE % (TBSIZE * elements_per_lane * chunks_per_block) != 0)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << "Array size must be a multiple of " << TBSIZE;
|
||||
ss << "Array size must be a multiple of elements operated on per block ("
|
||||
<< TBSIZE * elements_per_lane * chunks_per_block
|
||||
<< ").";
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
std::cerr << "block count " << block_count << std::endl;
|
||||
|
||||
#ifdef NONTEMPORAL
|
||||
std::cerr << "Using non-temporal memory operations." << std::endl;
|
||||
#endif
|
||||
|
||||
// Set device
|
||||
int count;
|
||||
@ -49,7 +86,7 @@ HIPStream<T>::HIPStream(const int ARRAY_SIZE, const int device_index)
|
||||
array_size = ARRAY_SIZE;
|
||||
|
||||
// Allocate the host array for partial sums for dot kernels
|
||||
sums = (T*)malloc(sizeof(T) * DOT_NUM_BLOCKS);
|
||||
sums = (T*)malloc(block_count*sizeof(T));
|
||||
|
||||
// Check buffers fit on the device
|
||||
hipDeviceProp_t props;
|
||||
@ -64,7 +101,7 @@ HIPStream<T>::HIPStream(const int ARRAY_SIZE, const int device_index)
|
||||
check_error();
|
||||
hipMalloc(&d_c, ARRAY_SIZE*sizeof(T));
|
||||
check_error();
|
||||
hipMalloc(&d_sum, DOT_NUM_BLOCKS*sizeof(T));
|
||||
hipMalloc(&d_sum, block_count*sizeof(T));
|
||||
check_error();
|
||||
}
|
||||
|
||||
@ -115,68 +152,115 @@ void HIPStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector
|
||||
check_error();
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void copy_kernel(const T * a, T * c)
|
||||
template <size_t elements_per_lane, size_t chunks_per_block, typename T>
|
||||
__launch_bounds__(TBSIZE)
|
||||
__global__
|
||||
void copy_kernel(const T * __restrict a, T * __restrict c)
|
||||
{
|
||||
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||
c[i] = a[i];
|
||||
const size_t dx = (blockDim.x * gridDim.x) * elements_per_lane;
|
||||
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||
for (size_t i = 0; i != chunks_per_block; ++i)
|
||||
{
|
||||
for (size_t j = 0; j != elements_per_lane; ++j)
|
||||
{
|
||||
store(load(a[gidx + i * dx + j]), c[gidx + i * dx + j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void HIPStream<T>::copy()
|
||||
{
|
||||
hipLaunchKernelGGL(HIP_KERNEL_NAME(copy_kernel<T>), dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0, d_a, d_c);
|
||||
hipLaunchKernelGGL(HIP_KERNEL_NAME(copy_kernel<elements_per_lane, chunks_per_block, T>),
|
||||
dim3(block_count),
|
||||
dim3(TBSIZE),
|
||||
0, 0, d_a, d_c);
|
||||
check_error();
|
||||
hipDeviceSynchronize();
|
||||
check_error();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void mul_kernel(T * b, const T * c)
|
||||
template <size_t elements_per_lane, size_t chunks_per_block, typename T>
|
||||
__launch_bounds__(TBSIZE)
|
||||
__global__
|
||||
void mul_kernel(T * __restrict b, const T * __restrict c)
|
||||
{
|
||||
const T scalar = startScalar;
|
||||
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||
b[i] = scalar * c[i];
|
||||
const size_t dx = (blockDim.x * gridDim.x) * elements_per_lane;
|
||||
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||
for (size_t i = 0; i != chunks_per_block; ++i)
|
||||
{
|
||||
for (size_t j = 0; j != elements_per_lane; ++j)
|
||||
{
|
||||
store(scalar * load(c[gidx + i * dx + j]), b[gidx + i * dx + j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void HIPStream<T>::mul()
|
||||
{
|
||||
hipLaunchKernelGGL(HIP_KERNEL_NAME(mul_kernel<T>), dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0, d_b, d_c);
|
||||
hipLaunchKernelGGL(HIP_KERNEL_NAME(mul_kernel<elements_per_lane, chunks_per_block, T>),
|
||||
dim3(block_count),
|
||||
dim3(TBSIZE),
|
||||
0, 0, d_b, d_c);
|
||||
check_error();
|
||||
hipDeviceSynchronize();
|
||||
check_error();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void add_kernel(const T * a, const T * b, T * c)
|
||||
template <size_t elements_per_lane, size_t chunks_per_block, typename T>
|
||||
__launch_bounds__(TBSIZE)
|
||||
__global__
|
||||
void add_kernel(const T * __restrict a, const T * __restrict b, T * __restrict c)
|
||||
{
|
||||
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||
c[i] = a[i] + b[i];
|
||||
const size_t dx = (blockDim.x * gridDim.x) * elements_per_lane;
|
||||
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||
for (size_t i = 0; i != chunks_per_block; ++i)
|
||||
{
|
||||
for (size_t j = 0; j != elements_per_lane; ++j)
|
||||
{
|
||||
store(load(a[gidx + i * dx + j]) + load(b[gidx + i * dx + j]), c[gidx + i * dx + j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void HIPStream<T>::add()
|
||||
{
|
||||
hipLaunchKernelGGL(HIP_KERNEL_NAME(add_kernel<T>), dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0, d_a, d_b, d_c);
|
||||
hipLaunchKernelGGL(HIP_KERNEL_NAME(add_kernel<elements_per_lane, chunks_per_block, T>),
|
||||
dim3(block_count),
|
||||
dim3(TBSIZE),
|
||||
0, 0, d_a, d_b, d_c);
|
||||
check_error();
|
||||
hipDeviceSynchronize();
|
||||
check_error();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void triad_kernel(T * a, const T * b, const T * c)
|
||||
template <size_t elements_per_lane, size_t chunks_per_block, typename T>
|
||||
__launch_bounds__(TBSIZE)
|
||||
__global__
|
||||
void triad_kernel(T * __restrict a, const T * __restrict b, const T * __restrict c)
|
||||
{
|
||||
const T scalar = startScalar;
|
||||
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
const size_t dx = (blockDim.x * gridDim.x) * elements_per_lane;
|
||||
const size_t gidx = (threadIdx.x + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||
for (size_t i = 0; i != chunks_per_block; ++i)
|
||||
{
|
||||
for (size_t j = 0; j != elements_per_lane; ++j)
|
||||
{
|
||||
store(load(b[gidx + i * dx + j]) + scalar * load(c[gidx + i * dx + j]), a[gidx + i * dx + j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void HIPStream<T>::triad()
|
||||
{
|
||||
hipLaunchKernelGGL(HIP_KERNEL_NAME(triad_kernel<T>), dim3(array_size/TBSIZE), dim3(TBSIZE), 0, 0, d_a, d_b, d_c);
|
||||
hipLaunchKernelGGL(HIP_KERNEL_NAME(triad_kernel<elements_per_lane, chunks_per_block, T>),
|
||||
dim3(block_count),
|
||||
dim3(TBSIZE),
|
||||
0, 0, d_a, d_b, d_c);
|
||||
check_error();
|
||||
hipDeviceSynchronize();
|
||||
check_error();
|
||||
@ -199,42 +283,78 @@ void HIPStream<T>::nstream()
|
||||
check_error();
|
||||
}
|
||||
|
||||
template <class T>
|
||||
__global__ void dot_kernel(const T * a, const T * b, T * sum, int array_size)
|
||||
template<unsigned int n = TBSIZE>
|
||||
struct Reducer
|
||||
{
|
||||
template<typename I>
|
||||
__device__
|
||||
static
|
||||
void reduce(I it) noexcept
|
||||
{
|
||||
if (n == 1) return;
|
||||
|
||||
#if defined(__HIP_PLATFORM_NVCC__)
|
||||
constexpr unsigned int warpSize = 32;
|
||||
#endif
|
||||
constexpr bool is_same_warp{n <= warpSize * 2};
|
||||
if (static_cast<int>(threadIdx.x) < n/2)
|
||||
{
|
||||
it[threadIdx.x] += it[threadIdx.x + n/2];
|
||||
}
|
||||
is_same_warp ? __threadfence_block() : __syncthreads();
|
||||
Reducer<n/2>::reduce(it);
|
||||
}
|
||||
};
|
||||
|
||||
template<>
|
||||
struct Reducer<1u> {
|
||||
template<typename I>
|
||||
__device__
|
||||
static
|
||||
void reduce(I) noexcept
|
||||
{}
|
||||
};
|
||||
|
||||
template <size_t elements_per_lane, size_t chunks_per_block, typename T>
|
||||
__launch_bounds__(TBSIZE)
|
||||
__global__
|
||||
__global__ void dot_kernel(const T * __restrict a, const T * __restrict b, T * __restrict sum)
|
||||
{
|
||||
__shared__ T tb_sum[TBSIZE];
|
||||
const size_t tidx = threadIdx.x;
|
||||
const size_t dx = (blockDim.x * gridDim.x) * elements_per_lane;
|
||||
const size_t gidx = (tidx + blockIdx.x * blockDim.x) * elements_per_lane;
|
||||
|
||||
int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||
const size_t local_i = hipThreadIdx_x;
|
||||
|
||||
tb_sum[local_i] = 0.0;
|
||||
for (; i < array_size; i += hipBlockDim_x*hipGridDim_x)
|
||||
tb_sum[local_i] += a[i] * b[i];
|
||||
|
||||
for (int offset = hipBlockDim_x / 2; offset > 0; offset /= 2)
|
||||
T tmp{0};
|
||||
for (size_t i = 0; i != chunks_per_block; ++i)
|
||||
{
|
||||
for (size_t j = 0; j != elements_per_lane; ++j)
|
||||
{
|
||||
tmp += load(a[gidx + i * dx + j]) * load(b[gidx + i * dx + j]);
|
||||
}
|
||||
}
|
||||
tb_sum[tidx] = tmp;
|
||||
__syncthreads();
|
||||
if (local_i < offset)
|
||||
{
|
||||
tb_sum[local_i] += tb_sum[local_i+offset];
|
||||
}
|
||||
}
|
||||
|
||||
if (local_i == 0)
|
||||
sum[hipBlockIdx_x] = tb_sum[local_i];
|
||||
Reducer<>::reduce(tb_sum);
|
||||
if (tidx) return;
|
||||
store(tb_sum[0], sum[blockIdx.x]);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
T HIPStream<T>::dot()
|
||||
{
|
||||
hipLaunchKernelGGL(HIP_KERNEL_NAME(dot_kernel<T>), dim3(DOT_NUM_BLOCKS), dim3(TBSIZE), 0, 0, d_a, d_b, d_sum, array_size);
|
||||
hipLaunchKernelGGL(HIP_KERNEL_NAME(dot_kernel<elements_per_lane, chunks_per_block, T>),
|
||||
dim3(block_count),
|
||||
dim3(TBSIZE),
|
||||
0, 0, d_a, d_b, d_sum);
|
||||
check_error();
|
||||
|
||||
hipMemcpy(sums, d_sum, DOT_NUM_BLOCKS*sizeof(T), hipMemcpyDeviceToHost);
|
||||
hipMemcpy(sums, d_sum, block_count*sizeof(T), hipMemcpyDeviceToHost);
|
||||
check_error();
|
||||
|
||||
T sum = 0.0;
|
||||
for (int i = 0; i < DOT_NUM_BLOCKS; i++)
|
||||
for (int i = 0; i < block_count; i++)
|
||||
sum += sums[i];
|
||||
|
||||
return sum;
|
||||
|
||||
@ -18,9 +18,42 @@
|
||||
template <class T>
|
||||
class HIPStream : public Stream<T>
|
||||
{
|
||||
#ifdef __HIP_PLATFORM_NVCC__
|
||||
#ifndef DWORDS_PER_LANE
|
||||
#define DWORDS_PER_LANE 1
|
||||
#endif
|
||||
#ifndef CHUNKS_PER_BLOCK
|
||||
#define CHUNKS_PER_BLOCK 8
|
||||
#endif
|
||||
#else
|
||||
#ifndef DWORDS_PER_LANE
|
||||
#define DWORDS_PER_LANE 4
|
||||
#endif
|
||||
#ifndef CHUNKS_PER_BLOCK
|
||||
#define CHUNKS_PER_BLOCK 1
|
||||
#endif
|
||||
#endif
|
||||
// Make sure that either:
|
||||
// DWORDS_PER_LANE is less than sizeof(T), in which case we default to 1 element
|
||||
// or
|
||||
// DWORDS_PER_LANE is divisible by sizeof(T)
|
||||
static_assert((DWORDS_PER_LANE * sizeof(unsigned int) < sizeof(T)) ||
|
||||
(DWORDS_PER_LANE * sizeof(unsigned int) % sizeof(T) == 0),
|
||||
"DWORDS_PER_LANE not divisible by sizeof(element_type)");
|
||||
|
||||
static constexpr unsigned int chunks_per_block{CHUNKS_PER_BLOCK};
|
||||
static constexpr unsigned int dwords_per_lane{DWORDS_PER_LANE};
|
||||
// Take into account the datatype size
|
||||
// That is, if we specify 4 DWORDS_PER_LANE, this is 2 FP64 elements
|
||||
// and 4 FP32 elements
|
||||
static constexpr unsigned int elements_per_lane{
|
||||
(DWORDS_PER_LANE * sizeof(unsigned int)) < sizeof(T) ? 1 : (
|
||||
DWORDS_PER_LANE * sizeof(unsigned int) / sizeof(T))};
|
||||
|
||||
protected:
|
||||
// Size of arrays
|
||||
int array_size;
|
||||
int block_count;
|
||||
|
||||
// Host array for partial sums for dot kernel
|
||||
T *sums;
|
||||
|
||||
@ -2,6 +2,19 @@
|
||||
register_flag_required(CMAKE_CXX_COMPILER
|
||||
"Absolute path to the AMD HIP C++ compiler")
|
||||
|
||||
register_flag_optional(USE_NONTEMPORAL_MEM
|
||||
"Flag indicating to use non-temporal memory accesses to bypass cache."
|
||||
"OFF")
|
||||
|
||||
# TODO: Better flag descriptions
|
||||
register_flag_optional(DWORDS_PER_LANE "Flag indicating the number of double data types per wavefront lane." 4)
|
||||
register_flag_optional(CHUNKS_PER_BLOCK "Flag indicating the chunks per block." 1)
|
||||
|
||||
macro(setup)
|
||||
# nothing to do here as hipcc does everything correctly, what a surprise!
|
||||
# Ensure we set the proper preprocessor directives
|
||||
if (USE_NONTEMPORAL_MEM)
|
||||
add_definitions(-DNONTEMPORAL)
|
||||
endif ()
|
||||
register_definitions(DWORDS_PER_LANE=${DWORDS_PER_LANE})
|
||||
register_definitions(CHUNKS_PER_BLOCK=${CHUNKS_PER_BLOCK})
|
||||
endmacro()
|
||||
Loading…
Reference in New Issue
Block a user