Merge changes
This commit is contained in:
parent
bb0dcce28b
commit
b43eb9cf16
30
Makefile
30
Makefile
@ -1,6 +1,5 @@
|
||||
|
||||
LIBS = -l OpenCL
|
||||
FLAGS = -std=c++11 -O3
|
||||
LDLIBS = -l OpenCL
|
||||
CXXFLAGS = -std=c++11 -O3
|
||||
|
||||
PLATFORM = $(shell uname -s)
|
||||
ifeq ($(PLATFORM), Darwin)
|
||||
@ -9,15 +8,24 @@ endif
|
||||
|
||||
all: gpu-stream-ocl gpu-stream-cuda
|
||||
|
||||
gpu-stream-ocl: ocl-stream.cpp
|
||||
c++ $< $(FLAGS) -o $@ $(LIBS)
|
||||
gpu-stream-ocl: ocl-stream.cpp common.o Makefile
|
||||
$(CXX) $(CXXFLAGS) -Wno-deprecated-declarations common.o $< -o $@ $(LDLIBS)
|
||||
|
||||
gpu-stream-cuda: cuda-stream.cu
|
||||
ifeq ($(shell which nvcc > /dev/null; echo $$?), 0)
|
||||
nvcc $< $(FLAGS) -o $@
|
||||
else
|
||||
@echo "Cannot find nvcc, please install CUDA";
|
||||
common.o: common.cpp Makefile
|
||||
|
||||
ifeq ($(shell which nvcc),"")
|
||||
$(error "Cannot find nvcc, please install CUDA toolkit")
|
||||
endif
|
||||
|
||||
gpu-stream-cuda: cuda-stream.cu common.o Makefile
|
||||
ifeq ($(shell which nvcc > /dev/null; echo $$?), 0)
|
||||
nvcc $(CXXFLAGS) common.o $< -o $@
|
||||
else
|
||||
$(error "Cannot find nvcc, please install CUDA toolkit")
|
||||
endif
|
||||
|
||||
.PHONY: clean
|
||||
|
||||
clean:
|
||||
rm -f gpu-stream-ocl gpu-stream-cuda
|
||||
rm -f gpu-stream-ocl gpu-stream-cuda *.o
|
||||
|
||||
|
||||
576
cuda-stream.cu
576
cuda-stream.cu
@ -4,24 +4,11 @@
|
||||
#include <vector>
|
||||
#include <chrono>
|
||||
#include <cfloat>
|
||||
#include <iomanip>
|
||||
#include <cmath>
|
||||
|
||||
#include <cuda.h>
|
||||
#include "common.h"
|
||||
|
||||
#define DATATYPE double
|
||||
unsigned int ARRAY_SIZE = 50000000;
|
||||
unsigned int NTIMES = 10;
|
||||
|
||||
size_t DATATYPE_SIZE = sizeof(double);
|
||||
bool useFloat = false;
|
||||
|
||||
#define MIN(a,b) ((a) < (b)) ? (a) : (b)
|
||||
#define MAX(a,b) ((a) > (b)) ? (a) : (b)
|
||||
|
||||
#define VERSION_STRING "0.0"
|
||||
|
||||
void parseArguments(int argc, char *argv[]);
|
||||
std::string getDeviceName(int device);
|
||||
|
||||
struct invaliddevice : public std::exception
|
||||
@ -54,75 +41,6 @@ void check_cuda_error(void)
|
||||
}
|
||||
}
|
||||
|
||||
void check_solution(void* a, void* b, void* c)
|
||||
{
|
||||
// Generate correct solution
|
||||
double golda = 1.0;
|
||||
double goldb = 2.0;
|
||||
double goldc = 0.0;
|
||||
float goldaf = 1.0;
|
||||
float goldbf = 2.0;
|
||||
float goldcf = 0.0;
|
||||
|
||||
const double scalar = 3.0;
|
||||
const float scalarf = 3.0;
|
||||
|
||||
for (unsigned int i = 0; i < NTIMES; i++)
|
||||
{
|
||||
// Double
|
||||
goldc = golda;
|
||||
goldb = scalar * goldc;
|
||||
goldc = golda + goldb;
|
||||
golda = goldb + scalar * goldc;
|
||||
// Float
|
||||
goldcf = goldaf;
|
||||
goldbf = scalarf * goldcf;
|
||||
goldcf = goldaf + goldbf;
|
||||
goldaf = goldbf + scalarf * goldcf;
|
||||
}
|
||||
|
||||
// Calculate average error
|
||||
double erra = 0.0;
|
||||
double errb = 0.0;
|
||||
double errc = 0.0;
|
||||
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
|
||||
{
|
||||
if (useFloat)
|
||||
{
|
||||
erra += fabsf(((float*)a)[i] - goldaf);
|
||||
errb += fabsf(((float*)b)[i] - goldbf);
|
||||
errc += fabsf(((float*)c)[i] - goldcf);
|
||||
}
|
||||
else
|
||||
{
|
||||
erra += fabs(((double*)a)[i] - (double)golda);
|
||||
errb += fabs(((double*)b)[i] - (double)goldb);
|
||||
errc += fabs(((double*)c)[i] - (double)goldc);
|
||||
}
|
||||
}
|
||||
erra /= (double)ARRAY_SIZE;
|
||||
errb /= (double)ARRAY_SIZE;
|
||||
errc /= (double)ARRAY_SIZE;
|
||||
|
||||
double epsi;
|
||||
if (useFloat) epsi = 1.0E-6;
|
||||
else epsi = 1.0E-13;
|
||||
|
||||
if (erra > epsi)
|
||||
std::cout
|
||||
<< "Validation failed on a[]. Average error " << erra
|
||||
<< std::endl;
|
||||
if (errb > epsi)
|
||||
std::cout
|
||||
<< "Validation failed on b[]. Average error " << errb
|
||||
<< std::endl;
|
||||
if (errc > epsi)
|
||||
std::cout
|
||||
<< "Validation failed on c[]. Average error " << errc
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void copy(const T * a, T * c)
|
||||
{
|
||||
@ -153,8 +71,6 @@ __global__ void triad(T * a, const T * b, const T * c)
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
}
|
||||
|
||||
int deviceIndex = 0;
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
|
||||
@ -164,218 +80,230 @@ int main(int argc, char *argv[])
|
||||
<< "Version: " << VERSION_STRING << std::endl
|
||||
<< "Implementation: CUDA" << std::endl;
|
||||
|
||||
try
|
||||
parseArguments(argc, argv);
|
||||
|
||||
if (NTIMES < 2) throw badntimes();
|
||||
|
||||
std::cout << "Precision: ";
|
||||
if (useFloat) std::cout << "float";
|
||||
else std::cout << "double";
|
||||
std::cout << std::endl << std::endl;
|
||||
|
||||
if (ARRAY_SIZE % 1024 != 0)
|
||||
{
|
||||
parseArguments(argc, argv);
|
||||
unsigned int OLD_ARRAY_SIZE = ARRAY_SIZE;
|
||||
ARRAY_SIZE -= ARRAY_SIZE % 1024;
|
||||
std::cout
|
||||
<< "Warning: array size must divide 1024" << std::endl
|
||||
<< "Resizing array from " << OLD_ARRAY_SIZE
|
||||
<< " to " << ARRAY_SIZE << std::endl;
|
||||
}
|
||||
|
||||
if (NTIMES < 2) throw badntimes();
|
||||
// Get precision (used to reset later)
|
||||
std::streamsize ss = std::cout.precision();
|
||||
|
||||
std::cout << "Precision: ";
|
||||
if (useFloat) std::cout << "float";
|
||||
else std::cout << "double";
|
||||
std::cout << std::endl << std::endl;
|
||||
size_t DATATYPE_SIZE;
|
||||
|
||||
if (ARRAY_SIZE % 1024 != 0)
|
||||
if (useFloat)
|
||||
{
|
||||
DATATYPE_SIZE = sizeof(float);
|
||||
}
|
||||
else
|
||||
{
|
||||
DATATYPE_SIZE = sizeof(double);
|
||||
}
|
||||
|
||||
// Display number of bytes in array
|
||||
std::cout << std::setprecision(1) << std::fixed
|
||||
<< "Array size: " << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
||||
<< " (=" << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
||||
<< std::endl;
|
||||
std::cout << "Total size: " << 3*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
||||
<< " (=" << 3*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
||||
<< std::endl;
|
||||
|
||||
// Reset precision
|
||||
std::cout.precision(ss);
|
||||
|
||||
// Check device index is in range
|
||||
int count;
|
||||
cudaGetDeviceCount(&count);
|
||||
check_cuda_error();
|
||||
if (deviceIndex >= count) throw invaliddevice();
|
||||
cudaSetDevice(deviceIndex);
|
||||
check_cuda_error();
|
||||
|
||||
// Print out device name
|
||||
std::cout << "Using CUDA device " << getDeviceName(deviceIndex) << std::endl;
|
||||
|
||||
|
||||
// Create host vectors
|
||||
void * h_a = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||
void * h_b = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||
void * h_c = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||
|
||||
// Initilise arrays
|
||||
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
|
||||
{
|
||||
if (useFloat)
|
||||
{
|
||||
unsigned int OLD_ARRAY_SIZE = ARRAY_SIZE;
|
||||
ARRAY_SIZE -= ARRAY_SIZE % 1024;
|
||||
std::cout
|
||||
<< "Warning: array size must divide 1024" << std::endl
|
||||
<< "Resizing array from " << OLD_ARRAY_SIZE
|
||||
<< " to " << ARRAY_SIZE << std::endl;
|
||||
((float*)h_a)[i] = 1.0;
|
||||
((float*)h_b)[i] = 2.0;
|
||||
((float*)h_c)[i] = 0.0;
|
||||
}
|
||||
|
||||
// Get precision (used to reset later)
|
||||
std::streamsize ss = std::cout.precision();
|
||||
|
||||
// Display number of bytes in array
|
||||
std::cout << std::setprecision(1) << std::fixed
|
||||
<< "Array size: " << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
||||
<< " (=" << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
||||
<< std::endl;
|
||||
std::cout << "Total size: " << 3*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
||||
<< " (=" << 3*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
||||
<< std::endl;
|
||||
|
||||
// Reset precision
|
||||
std::cout.precision(ss);
|
||||
|
||||
// Check device index is in range
|
||||
int count;
|
||||
cudaGetDeviceCount(&count);
|
||||
check_cuda_error();
|
||||
if (deviceIndex >= count) throw invaliddevice();
|
||||
cudaSetDevice(deviceIndex);
|
||||
check_cuda_error();
|
||||
|
||||
// Print out device name
|
||||
std::cout << "Using CUDA device " << getDeviceName(deviceIndex) << std::endl;
|
||||
|
||||
|
||||
// Create host vectors
|
||||
void * h_a = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||
void * h_b = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||
void * h_c = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||
|
||||
// Initilise arrays
|
||||
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
|
||||
else
|
||||
{
|
||||
if (useFloat)
|
||||
{
|
||||
((float*)h_a)[i] = 1.0;
|
||||
((float*)h_b)[i] = 2.0;
|
||||
((float*)h_c)[i] = 0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
((double*)h_a)[i] = 1.0;
|
||||
((double*)h_b)[i] = 2.0;
|
||||
((double*)h_c)[i] = 0.0;
|
||||
}
|
||||
((double*)h_a)[i] = 1.0;
|
||||
((double*)h_b)[i] = 2.0;
|
||||
((double*)h_c)[i] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Create device buffers
|
||||
void * d_a, * d_b, *d_c;
|
||||
cudaMalloc(&d_a, ARRAY_SIZE*DATATYPE_SIZE);
|
||||
check_cuda_error();
|
||||
cudaMalloc(&d_b, ARRAY_SIZE*DATATYPE_SIZE);
|
||||
check_cuda_error();
|
||||
cudaMalloc(&d_c, ARRAY_SIZE*DATATYPE_SIZE);
|
||||
check_cuda_error();
|
||||
// Create device buffers
|
||||
void * d_a, * d_b, *d_c;
|
||||
cudaMalloc(&d_a, ARRAY_SIZE*DATATYPE_SIZE);
|
||||
check_cuda_error();
|
||||
cudaMalloc(&d_b, ARRAY_SIZE*DATATYPE_SIZE);
|
||||
check_cuda_error();
|
||||
cudaMalloc(&d_c, ARRAY_SIZE*DATATYPE_SIZE);
|
||||
check_cuda_error();
|
||||
|
||||
// Copy host memory to device
|
||||
cudaMemcpy(d_a, h_a, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
|
||||
check_cuda_error();
|
||||
cudaMemcpy(d_b, h_b, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
|
||||
check_cuda_error();
|
||||
cudaMemcpy(d_c, h_c, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
|
||||
check_cuda_error();
|
||||
// Copy host memory to device
|
||||
cudaMemcpy(d_a, h_a, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
|
||||
check_cuda_error();
|
||||
cudaMemcpy(d_b, h_b, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
|
||||
check_cuda_error();
|
||||
cudaMemcpy(d_c, h_c, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
|
||||
check_cuda_error();
|
||||
|
||||
// Make sure the copies are finished
|
||||
// Make sure the copies are finished
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
|
||||
// List of times
|
||||
std::vector< std::vector<double> > timings;
|
||||
|
||||
// Declare timers
|
||||
std::chrono::high_resolution_clock::time_point t1, t2;
|
||||
|
||||
// Main loop
|
||||
for (unsigned int k = 0; k < NTIMES; k++)
|
||||
{
|
||||
std::vector<double> times;
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (useFloat)
|
||||
copy<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_c);
|
||||
else
|
||||
copy<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_c);
|
||||
check_cuda_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
|
||||
// List of times
|
||||
std::vector< std::vector<double> > timings;
|
||||
|
||||
// Declare timers
|
||||
std::chrono::high_resolution_clock::time_point t1, t2;
|
||||
|
||||
// Main loop
|
||||
for (unsigned int k = 0; k < NTIMES; k++)
|
||||
{
|
||||
std::vector<double> times;
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (useFloat)
|
||||
copy<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_c);
|
||||
else
|
||||
copy<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_c);
|
||||
check_cuda_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (useFloat)
|
||||
mul<<<ARRAY_SIZE/1024, 1024>>>((float*)d_b, (float*)d_c);
|
||||
else
|
||||
mul<<<ARRAY_SIZE/1024, 1024>>>((double*)d_b, (double*)d_c);
|
||||
check_cuda_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (useFloat)
|
||||
add<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_b, (float*)d_c);
|
||||
else
|
||||
add<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_b, (double*)d_c);
|
||||
check_cuda_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (useFloat)
|
||||
triad<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_b, (float*)d_c);
|
||||
else
|
||||
triad<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_b, (double*)d_c);
|
||||
check_cuda_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
timings.push_back(times);
|
||||
|
||||
}
|
||||
|
||||
// Check solutions
|
||||
cudaMemcpy(h_a, d_a, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (useFloat)
|
||||
mul<<<ARRAY_SIZE/1024, 1024>>>((float*)d_b, (float*)d_c);
|
||||
else
|
||||
mul<<<ARRAY_SIZE/1024, 1024>>>((double*)d_b, (double*)d_c);
|
||||
check_cuda_error();
|
||||
cudaMemcpy(h_b, d_b, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
cudaMemcpy(h_c, d_c, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (useFloat)
|
||||
add<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_b, (float*)d_c);
|
||||
else
|
||||
add<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_b, (double*)d_c);
|
||||
check_cuda_error();
|
||||
check_solution(h_a, h_b, h_c);
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
// Crunch results
|
||||
size_t sizes[4] = {
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE
|
||||
};
|
||||
double min[4] = {DBL_MAX, DBL_MAX, DBL_MAX, DBL_MAX};
|
||||
double max[4] = {0.0, 0.0, 0.0, 0.0};
|
||||
double avg[4] = {0.0, 0.0, 0.0, 0.0};
|
||||
// Ignore first result
|
||||
for (unsigned int i = 1; i < NTIMES; i++)
|
||||
{
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
avg[j] += timings[i][j];
|
||||
min[j] = MIN(min[j], timings[i][j]);
|
||||
max[j] = MAX(max[j], timings[i][j]);
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < 4; j++)
|
||||
avg[j] /= (double)(NTIMES-1);
|
||||
|
||||
// Display results
|
||||
std::string labels[] = {"Copy", "Mul", "Add", "Triad"};
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << "Function"
|
||||
<< std::left << std::setw(12) << "MBytes/sec"
|
||||
<< std::left << std::setw(12) << "Min (sec)"
|
||||
<< std::left << std::setw(12) << "Max"
|
||||
<< std::left << std::setw(12) << "Average"
|
||||
<< std::endl;
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << labels[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * sizes[j]/min[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << min[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << max[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << avg[j]
|
||||
<< std::endl;
|
||||
}
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (useFloat)
|
||||
triad<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_b, (float*)d_c);
|
||||
else
|
||||
triad<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_b, (double*)d_c);
|
||||
check_cuda_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
timings.push_back(times);
|
||||
|
||||
}
|
||||
catch (std::exception& e)
|
||||
|
||||
// Check solutions
|
||||
cudaMemcpy(h_a, d_a, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
|
||||
check_cuda_error();
|
||||
cudaMemcpy(h_b, d_b, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
|
||||
check_cuda_error();
|
||||
cudaMemcpy(h_c, d_c, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
|
||||
check_cuda_error();
|
||||
|
||||
if (useFloat)
|
||||
{
|
||||
std::cerr
|
||||
<< "Error: "
|
||||
<< e.what()
|
||||
check_solution<float>(h_a, h_b, h_c);
|
||||
}
|
||||
else
|
||||
{
|
||||
check_solution<double>(h_a, h_b, h_c);
|
||||
}
|
||||
|
||||
// Crunch results
|
||||
size_t sizes[4] = {
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE
|
||||
};
|
||||
double min[4] = {DBL_MAX, DBL_MAX, DBL_MAX, DBL_MAX};
|
||||
double max[4] = {0.0, 0.0, 0.0, 0.0};
|
||||
double avg[4] = {0.0, 0.0, 0.0, 0.0};
|
||||
|
||||
// Ignore first result
|
||||
for (unsigned int i = 1; i < NTIMES; i++)
|
||||
{
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
avg[j] += timings[i][j];
|
||||
min[j] = std::min(min[j], timings[i][j]);
|
||||
max[j] = std::max(max[j], timings[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 0; j < 4; j++)
|
||||
avg[j] /= (double)(NTIMES-1);
|
||||
|
||||
// Display results
|
||||
std::string labels[] = {"Copy", "Mul", "Add", "Triad"};
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << "Function"
|
||||
<< std::left << std::setw(12) << "MBytes/sec"
|
||||
<< std::left << std::setw(12) << "Min (sec)"
|
||||
<< std::left << std::setw(12) << "Max"
|
||||
<< std::left << std::setw(12) << "Average"
|
||||
<< std::endl;
|
||||
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << labels[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * sizes[j]/min[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << min[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << max[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << avg[j]
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
std::string getDeviceName(int device)
|
||||
@ -386,98 +314,28 @@ std::string getDeviceName(int device)
|
||||
return std::string(prop.name);
|
||||
}
|
||||
|
||||
|
||||
int parseUInt(const char *str, unsigned int *output)
|
||||
void listDevices(void)
|
||||
{
|
||||
char *next;
|
||||
*output = strtoul(str, &next, 10);
|
||||
return !strlen(next);
|
||||
}
|
||||
// Get number of devices
|
||||
int count;
|
||||
cudaGetDeviceCount(&count);
|
||||
check_cuda_error();
|
||||
|
||||
int parseInt(const char *str, int *output)
|
||||
{
|
||||
char *next;
|
||||
*output = strtol(str, &next, 10);
|
||||
return !strlen(next);
|
||||
}
|
||||
|
||||
void parseArguments(int argc, char *argv[])
|
||||
{
|
||||
for (int i = 1; i < argc; i++)
|
||||
// Print device names
|
||||
if (count == 0)
|
||||
{
|
||||
if (!strcmp(argv[i], "--list"))
|
||||
std::cout << "No devices found." << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << std::endl;
|
||||
std::cout << "Devices:" << std::endl;
|
||||
for (int i = 0; i < count; i++)
|
||||
{
|
||||
// Get number of devices
|
||||
int count;
|
||||
cudaGetDeviceCount(&count);
|
||||
std::cout << i << ": " << getDeviceName(i) << std::endl;
|
||||
check_cuda_error();
|
||||
|
||||
// Print device names
|
||||
if (count == 0)
|
||||
{
|
||||
std::cout << "No devices found." << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << std::endl;
|
||||
std::cout << "Devices:" << std::endl;
|
||||
for (int i = 0; i < count; i++)
|
||||
{
|
||||
std::cout << i << ": " << getDeviceName(i) << std::endl;
|
||||
check_cuda_error();
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
exit(0);
|
||||
}
|
||||
else if (!strcmp(argv[i], "--device"))
|
||||
{
|
||||
if (++i >= argc || !parseInt(argv[i], &deviceIndex))
|
||||
{
|
||||
std::cout << "Invalid device index" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(argv[i], "--arraysize") || !strcmp(argv[i], "-s"))
|
||||
{
|
||||
if (++i >= argc || !parseUInt(argv[i], &ARRAY_SIZE))
|
||||
{
|
||||
std::cout << "Invalid array size" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(argv[i], "--numtimes") || !strcmp(argv[i], "-n"))
|
||||
{
|
||||
if (++i >= argc || !parseUInt(argv[i], &NTIMES))
|
||||
{
|
||||
std::cout << "Invalid number of times" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(argv[i], "--float"))
|
||||
{
|
||||
useFloat = true;
|
||||
DATATYPE_SIZE = sizeof(float);
|
||||
}
|
||||
else if (!strcmp(argv[i], "--help") || !strcmp(argv[i], "-h"))
|
||||
{
|
||||
std::cout << std::endl;
|
||||
std::cout << "Usage: ./gpu-stream-cuda [OPTIONS]" << std::endl << std::endl;
|
||||
std::cout << "Options:" << std::endl;
|
||||
std::cout << " -h --help Print the message" << std::endl;
|
||||
std::cout << " --list List available devices" << std::endl;
|
||||
std::cout << " --device INDEX Select device at INDEX" << std::endl;
|
||||
std::cout << " -s --arraysize SIZE Use SIZE elements in the array" << std::endl;
|
||||
std::cout << " -n --numtimes NUM Run the test NUM times (NUM >= 2)" << std::endl;
|
||||
std::cout << " --float Use floats (rather than doubles)" << std::endl;
|
||||
std::cout << std::endl;
|
||||
exit(0);
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << "Unrecognized argument '" << argv[i] << "' (try '--help')"
|
||||
<< std::endl;
|
||||
exit(1);
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
627
ocl-stream.cpp
627
ocl-stream.cpp
@ -4,24 +4,12 @@
|
||||
#include <vector>
|
||||
#include <chrono>
|
||||
#include <cfloat>
|
||||
#include <iomanip>
|
||||
#include <cmath>
|
||||
|
||||
#define __CL_ENABLE_EXCEPTIONS
|
||||
#include "cl.hpp"
|
||||
#include "CL/cl.hpp"
|
||||
#include "common.h"
|
||||
|
||||
unsigned int ARRAY_SIZE = 50000000;
|
||||
unsigned int NTIMES = 10;
|
||||
|
||||
size_t DATATYPE_SIZE = sizeof(double);
|
||||
bool useFloat = false;
|
||||
|
||||
#define MIN(a,b) ((a) < (b)) ? (a) : (b)
|
||||
#define MAX(a,b) ((a) > (b)) ? (a) : (b)
|
||||
|
||||
#define VERSION_STRING "0.0"
|
||||
|
||||
void parseArguments(int argc, char *argv[]);
|
||||
std::string getDeviceName(const cl::Device& device);
|
||||
unsigned getDeviceList(std::vector<cl::Device>& devices);
|
||||
|
||||
@ -50,76 +38,6 @@ struct badntimes : public std::exception
|
||||
};
|
||||
|
||||
|
||||
void check_solution(void* a, void* b, void* c)
|
||||
{
|
||||
// Generate correct solution
|
||||
double golda = 1.0;
|
||||
double goldb = 2.0;
|
||||
double goldc = 0.0;
|
||||
float goldaf = 1.0;
|
||||
float goldbf = 2.0;
|
||||
float goldcf = 0.0;
|
||||
|
||||
const double scalar = 3.0;
|
||||
const float scalarf = 3.0;
|
||||
|
||||
for (unsigned int i = 0; i < NTIMES; i++)
|
||||
{
|
||||
// Double
|
||||
goldc = golda;
|
||||
goldb = scalar * goldc;
|
||||
goldc = golda + goldb;
|
||||
golda = goldb + scalar * goldc;
|
||||
// Float
|
||||
goldcf = goldaf;
|
||||
goldbf = scalarf * goldcf;
|
||||
goldcf = goldaf + goldbf;
|
||||
goldaf = goldbf + scalarf * goldcf;
|
||||
}
|
||||
|
||||
// Calculate average error
|
||||
double erra = 0.0;
|
||||
double errb = 0.0;
|
||||
double errc = 0.0;
|
||||
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
|
||||
{
|
||||
if (useFloat)
|
||||
{
|
||||
erra += fabsf(((float*)a)[i] - goldaf);
|
||||
errb += fabsf(((float*)b)[i] - goldbf);
|
||||
errc += fabsf(((float*)c)[i] - goldcf);
|
||||
}
|
||||
else
|
||||
{
|
||||
erra += fabs(((double*)a)[i] - (double)golda);
|
||||
errb += fabs(((double*)b)[i] - (double)goldb);
|
||||
errc += fabs(((double*)c)[i] - (double)goldc);
|
||||
}
|
||||
}
|
||||
erra /= (double)ARRAY_SIZE;
|
||||
errb /= (double)ARRAY_SIZE;
|
||||
errc /= (double)ARRAY_SIZE;
|
||||
|
||||
double epsi;
|
||||
if (useFloat) epsi = 1.0E-6;
|
||||
else epsi = 1.0E-13;
|
||||
|
||||
if (erra > epsi)
|
||||
std::cout
|
||||
<< "Validation failed on a[]. Average error " << erra
|
||||
<< std::endl;
|
||||
if (errb > epsi)
|
||||
std::cout
|
||||
<< "Validation failed on b[]. Average error " << errb
|
||||
<< std::endl;
|
||||
if (errc > epsi)
|
||||
std::cout
|
||||
<< "Validation failed on c[]. Average error " << errc
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
cl_uint deviceIndex = 0;
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
|
||||
@ -129,236 +47,252 @@ int main(int argc, char *argv[])
|
||||
<< "Version: " << VERSION_STRING << std::endl
|
||||
<< "Implementation: OpenCL" << std::endl;
|
||||
|
||||
try
|
||||
parseArguments(argc, argv);
|
||||
|
||||
if (NTIMES < 2) throw badntimes();
|
||||
|
||||
std::cout << "Precision: ";
|
||||
if (useFloat) std::cout << "float";
|
||||
else std::cout << "double";
|
||||
std::cout << std::endl << std::endl;
|
||||
|
||||
if (ARRAY_SIZE % 1024 != 0)
|
||||
{
|
||||
parseArguments(argc, argv);
|
||||
unsigned int OLD_ARRAY_SIZE = ARRAY_SIZE;
|
||||
ARRAY_SIZE -= ARRAY_SIZE % 1024;
|
||||
std::cout
|
||||
<< "Warning: array size must divide 1024" << std::endl
|
||||
<< "Resizing array from " << OLD_ARRAY_SIZE
|
||||
<< " to " << ARRAY_SIZE << std::endl;
|
||||
}
|
||||
|
||||
if (NTIMES < 2) throw badntimes();
|
||||
// Get precision (used to reset later)
|
||||
std::streamsize ss = std::cout.precision();
|
||||
|
||||
std::cout << "Precision: ";
|
||||
if (useFloat) std::cout << "float";
|
||||
else std::cout << "double";
|
||||
std::cout << std::endl << std::endl;
|
||||
size_t DATATYPE_SIZE;
|
||||
|
||||
// Get precision (used to reset later)
|
||||
std::streamsize ss = std::cout.precision();
|
||||
if (useFloat)
|
||||
{
|
||||
DATATYPE_SIZE = sizeof(float);
|
||||
}
|
||||
else
|
||||
{
|
||||
DATATYPE_SIZE = sizeof(double);
|
||||
}
|
||||
|
||||
// Display number of bytes in array
|
||||
std::cout << std::setprecision(1) << std::fixed
|
||||
<< "Array size: " << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
||||
<< " (=" << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
||||
<< std::endl;
|
||||
std::cout << "Total size: " << 3*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
||||
<< " (=" << 3*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
||||
<< std::endl;
|
||||
|
||||
// Reset precision
|
||||
std::cout.precision(ss);
|
||||
// Display number of bytes in array
|
||||
std::cout << std::setprecision(1) << std::fixed
|
||||
<< "Array size: " << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
||||
<< " (=" << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
||||
<< std::endl;
|
||||
std::cout << "Total size: " << 3*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
||||
<< " (=" << 3*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
||||
<< std::endl;
|
||||
|
||||
// Open the Kernel source
|
||||
// Reset precision
|
||||
std::cout.precision(ss);
|
||||
|
||||
// Open the Kernel source
|
||||
std::string kernels;
|
||||
|
||||
{
|
||||
std::ifstream in("ocl-stream-kernels.cl");
|
||||
if (!in.is_open()) throw badfile();
|
||||
std::string kernels(std::istreambuf_iterator<char>(in), (std::istreambuf_iterator<char>()));
|
||||
|
||||
// Setup OpenCL
|
||||
|
||||
// Get list of devices
|
||||
std::vector<cl::Device> devices;
|
||||
getDeviceList(devices);
|
||||
|
||||
// Check device index is in range
|
||||
if (deviceIndex >= devices.size()) throw invaliddevice();
|
||||
|
||||
cl::Device device = devices[deviceIndex];
|
||||
|
||||
cl::Context context(device);
|
||||
cl::CommandQueue queue(context);
|
||||
cl::Program program(context, kernels);
|
||||
|
||||
// Print out device name
|
||||
std::string name = getDeviceName(device);
|
||||
std::cout << "Using OpenCL device " << name << std::endl;
|
||||
|
||||
try
|
||||
{
|
||||
std::string options = "";
|
||||
if (useFloat)
|
||||
options = "-DFLOAT";
|
||||
program.build(options.c_str());
|
||||
}
|
||||
catch (cl::Error& e)
|
||||
{
|
||||
std::vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>();
|
||||
std::string buildlog = program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(devices[0]);
|
||||
std::cerr
|
||||
<< "Build error:"
|
||||
<< buildlog
|
||||
<< std::endl;
|
||||
throw e;
|
||||
}
|
||||
|
||||
cl::make_kernel<cl::Buffer, cl::Buffer> copy(program, "copy");
|
||||
cl::make_kernel<cl::Buffer, cl::Buffer> mul(program, "mul");
|
||||
cl::make_kernel<cl::Buffer, cl::Buffer, cl::Buffer> add(program, "add");
|
||||
cl::make_kernel<cl::Buffer, cl::Buffer, cl::Buffer> triad(program, "triad");
|
||||
|
||||
// Create host vectors
|
||||
void *h_a = malloc(ARRAY_SIZE * DATATYPE_SIZE);
|
||||
void *h_b = malloc(ARRAY_SIZE * DATATYPE_SIZE);
|
||||
void *h_c = malloc(ARRAY_SIZE * DATATYPE_SIZE);
|
||||
|
||||
// Initilise arrays
|
||||
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
|
||||
{
|
||||
if (useFloat)
|
||||
{
|
||||
((float*)h_a)[i] = 1.0;
|
||||
((float*)h_b)[i] = 2.0;
|
||||
((float*)h_c)[i] = 0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
((double*)h_a)[i] = 1.0;
|
||||
((double*)h_b)[i] = 2.0;
|
||||
((double*)h_c)[i] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Create device buffers
|
||||
cl::Buffer d_a(context, CL_MEM_READ_WRITE, DATATYPE_SIZE * ARRAY_SIZE);
|
||||
cl::Buffer d_b(context, CL_MEM_READ_WRITE, DATATYPE_SIZE * ARRAY_SIZE);
|
||||
cl::Buffer d_c(context, CL_MEM_READ_WRITE, DATATYPE_SIZE * ARRAY_SIZE);
|
||||
|
||||
// Copy host memory to device
|
||||
queue.enqueueWriteBuffer(d_a, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_a);
|
||||
queue.enqueueWriteBuffer(d_b, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_b);
|
||||
queue.enqueueWriteBuffer(d_c, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_c);
|
||||
|
||||
// Make sure the copies are finished
|
||||
queue.finish();
|
||||
|
||||
// List of times
|
||||
std::vector< std::vector<double> > timings;
|
||||
|
||||
// Declare timers
|
||||
std::chrono::high_resolution_clock::time_point t1, t2;
|
||||
|
||||
// Main loop
|
||||
for (unsigned int k = 0; k < NTIMES; k++)
|
||||
{
|
||||
std::vector<double> times;
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
copy(
|
||||
cl::EnqueueArgs(
|
||||
queue,
|
||||
cl::NDRange(ARRAY_SIZE)),
|
||||
d_a, d_c);
|
||||
queue.finish();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
mul(
|
||||
cl::EnqueueArgs(
|
||||
queue,
|
||||
cl::NDRange(ARRAY_SIZE)),
|
||||
d_b, d_c);
|
||||
queue.finish();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
add(
|
||||
cl::EnqueueArgs(
|
||||
queue,
|
||||
cl::NDRange(ARRAY_SIZE)),
|
||||
d_a, d_b, d_c);
|
||||
queue.finish();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
triad(
|
||||
cl::EnqueueArgs(
|
||||
queue,
|
||||
cl::NDRange(ARRAY_SIZE)),
|
||||
d_a, d_b, d_c);
|
||||
queue.finish();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
timings.push_back(times);
|
||||
|
||||
}
|
||||
|
||||
// Check solutions
|
||||
queue.enqueueReadBuffer(d_a, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_a);
|
||||
queue.enqueueReadBuffer(d_b, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_b);
|
||||
queue.enqueueReadBuffer(d_c, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_c);
|
||||
queue.finish();
|
||||
check_solution(h_a, h_b, h_c);
|
||||
|
||||
// Crunch results
|
||||
size_t sizes[4] = {
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE
|
||||
};
|
||||
double min[4] = {DBL_MAX, DBL_MAX, DBL_MAX, DBL_MAX};
|
||||
double max[4] = {0.0, 0.0, 0.0, 0.0};
|
||||
double avg[4] = {0.0, 0.0, 0.0, 0.0};
|
||||
// Ignore first result
|
||||
for (unsigned int i = 1; i < NTIMES; i++)
|
||||
{
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
avg[j] += timings[i][j];
|
||||
min[j] = MIN(min[j], timings[i][j]);
|
||||
max[j] = MAX(max[j], timings[i][j]);
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < 4; j++)
|
||||
avg[j] /= (double)(NTIMES-1);
|
||||
|
||||
// Display results
|
||||
std::string labels[] = {"Copy", "Mul", "Add", "Triad"};
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << "Function"
|
||||
<< std::left << std::setw(12) << "MBytes/sec"
|
||||
<< std::left << std::setw(12) << "Min (sec)"
|
||||
<< std::left << std::setw(12) << "Max"
|
||||
<< std::left << std::setw(12) << "Average"
|
||||
<< std::endl;
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << labels[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * sizes[j]/min[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << min[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << max[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << avg[j]
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
kernels = std::string (std::istreambuf_iterator<char>(in), (std::istreambuf_iterator<char>()));
|
||||
}
|
||||
|
||||
// Setup OpenCL
|
||||
|
||||
// Get list of devices
|
||||
std::vector<cl::Device> devices;
|
||||
getDeviceList(devices);
|
||||
|
||||
// Check device index is in range
|
||||
if (deviceIndex >= devices.size()) throw invaliddevice();
|
||||
|
||||
cl::Device device = devices[deviceIndex];
|
||||
|
||||
cl::Context context(device);
|
||||
cl::CommandQueue queue(context);
|
||||
cl::Program program(context, kernels);
|
||||
|
||||
// Print out device name
|
||||
std::string name = getDeviceName(device);
|
||||
std::cout << "Using OpenCL device " << name << std::endl;
|
||||
|
||||
try
|
||||
{
|
||||
std::string options = "";
|
||||
if (useFloat)
|
||||
options = "-DFLOAT";
|
||||
program.build(options.c_str());
|
||||
}
|
||||
// Catch OpenCL Errors and display information
|
||||
catch (cl::Error& e)
|
||||
{
|
||||
std::vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>();
|
||||
std::string buildlog = program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(devices[0]);
|
||||
std::cerr
|
||||
<< "Error: "
|
||||
<< e.what()
|
||||
<< "(" << e.err() << ")"
|
||||
<< "Build error:"
|
||||
<< buildlog
|
||||
<< std::endl;
|
||||
throw e;
|
||||
}
|
||||
catch (std::exception& e)
|
||||
|
||||
cl::make_kernel<cl::Buffer, cl::Buffer> copy(program, "copy");
|
||||
cl::make_kernel<cl::Buffer, cl::Buffer> mul(program, "mul");
|
||||
cl::make_kernel<cl::Buffer, cl::Buffer, cl::Buffer> add(program, "add");
|
||||
cl::make_kernel<cl::Buffer, cl::Buffer, cl::Buffer> triad(program, "triad");
|
||||
|
||||
// Create host vectors
|
||||
void * h_a = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||
void * h_b = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||
void * h_c = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||
|
||||
// Initilise arrays
|
||||
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
|
||||
{
|
||||
std::cerr
|
||||
<< "Error: "
|
||||
<< e.what()
|
||||
if (useFloat)
|
||||
{
|
||||
((float*)h_a)[i] = 1.0;
|
||||
((float*)h_b)[i] = 2.0;
|
||||
((float*)h_c)[i] = 0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
((double*)h_a)[i] = 1.0;
|
||||
((double*)h_b)[i] = 2.0;
|
||||
((double*)h_c)[i] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Create device buffers
|
||||
cl::Buffer d_a(context, CL_MEM_READ_WRITE, DATATYPE_SIZE * ARRAY_SIZE);
|
||||
cl::Buffer d_b(context, CL_MEM_READ_WRITE, DATATYPE_SIZE * ARRAY_SIZE);
|
||||
cl::Buffer d_c(context, CL_MEM_READ_WRITE, DATATYPE_SIZE * ARRAY_SIZE);
|
||||
|
||||
// Copy host memory to device
|
||||
queue.enqueueWriteBuffer(d_a, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_a);
|
||||
queue.enqueueWriteBuffer(d_b, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_b);
|
||||
queue.enqueueWriteBuffer(d_c, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_c);
|
||||
|
||||
// Make sure the copies are finished
|
||||
queue.finish();
|
||||
|
||||
// List of times
|
||||
std::vector< std::vector<double> > timings;
|
||||
|
||||
// Declare timers
|
||||
std::chrono::high_resolution_clock::time_point t1, t2;
|
||||
|
||||
// Main loop
|
||||
for (unsigned int k = 0; k < NTIMES; k++)
|
||||
{
|
||||
std::vector<double> times;
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
copy(
|
||||
cl::EnqueueArgs(
|
||||
queue,
|
||||
cl::NDRange(ARRAY_SIZE)),
|
||||
d_a, d_c);
|
||||
queue.finish();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
mul(
|
||||
cl::EnqueueArgs(
|
||||
queue,
|
||||
cl::NDRange(ARRAY_SIZE)),
|
||||
d_b, d_c);
|
||||
queue.finish();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
add(
|
||||
cl::EnqueueArgs(
|
||||
queue,
|
||||
cl::NDRange(ARRAY_SIZE)),
|
||||
d_a, d_b, d_c);
|
||||
queue.finish();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
triad(
|
||||
cl::EnqueueArgs(
|
||||
queue,
|
||||
cl::NDRange(ARRAY_SIZE)),
|
||||
d_a, d_b, d_c);
|
||||
queue.finish();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
timings.push_back(times);
|
||||
|
||||
}
|
||||
|
||||
// Check solutions
|
||||
queue.enqueueReadBuffer(d_a, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_a);
|
||||
queue.enqueueReadBuffer(d_b, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_b);
|
||||
queue.enqueueReadBuffer(d_c, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_c);
|
||||
queue.finish();
|
||||
|
||||
if (useFloat)
|
||||
{
|
||||
check_solution<float>(h_a, h_b, h_c);
|
||||
}
|
||||
else
|
||||
{
|
||||
check_solution<double>(h_a, h_b, h_c);
|
||||
}
|
||||
|
||||
// Crunch results
|
||||
size_t sizes[4] = {
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE
|
||||
};
|
||||
double min[4] = {DBL_MAX, DBL_MAX, DBL_MAX, DBL_MAX};
|
||||
double max[4] = {0.0, 0.0, 0.0, 0.0};
|
||||
double avg[4] = {0.0, 0.0, 0.0, 0.0};
|
||||
|
||||
// Ignore first result
|
||||
for (unsigned int i = 1; i < NTIMES; i++)
|
||||
{
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
avg[j] += timings[i][j];
|
||||
min[j] = std::min(min[j], timings[i][j]);
|
||||
max[j] = std::max(max[j], timings[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 0; j < 4; j++)
|
||||
avg[j] /= (double)(NTIMES-1);
|
||||
|
||||
// Display results
|
||||
std::string labels[] = {"Copy", "Mul", "Add", "Triad"};
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << "Function"
|
||||
<< std::left << std::setw(12) << "MBytes/sec"
|
||||
<< std::left << std::setw(12) << "Min (sec)"
|
||||
<< std::left << std::setw(12) << "Max"
|
||||
<< std::left << std::setw(12) << "Average"
|
||||
<< std::endl;
|
||||
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << labels[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * sizes[j]/min[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << min[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << max[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << avg[j]
|
||||
<< std::endl;
|
||||
}
|
||||
}
|
||||
@ -396,89 +330,26 @@ std::string getDeviceName(const cl::Device& device)
|
||||
return name;
|
||||
}
|
||||
|
||||
|
||||
int parseUInt(const char *str, cl_uint *output)
|
||||
void listDevices(void)
|
||||
{
|
||||
char *next;
|
||||
*output = strtoul(str, &next, 10);
|
||||
return !strlen(next);
|
||||
}
|
||||
// Get list of devices
|
||||
std::vector<cl::Device> devices;
|
||||
getDeviceList(devices);
|
||||
|
||||
void parseArguments(int argc, char *argv[])
|
||||
{
|
||||
for (int i = 1; i < argc; i++)
|
||||
// Print device names
|
||||
if (devices.size() == 0)
|
||||
{
|
||||
if (!strcmp(argv[i], "--list"))
|
||||
std::cout << "No devices found." << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << std::endl;
|
||||
std::cout << "Devices:" << std::endl;
|
||||
for (unsigned i = 0; i < devices.size(); i++)
|
||||
{
|
||||
// Get list of devices
|
||||
std::vector<cl::Device> devices;
|
||||
getDeviceList(devices);
|
||||
|
||||
// Print device names
|
||||
if (devices.size() == 0)
|
||||
{
|
||||
std::cout << "No devices found." << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << std::endl;
|
||||
std::cout << "Devices:" << std::endl;
|
||||
for (unsigned i = 0; i < devices.size(); i++)
|
||||
{
|
||||
std::cout << i << ": " << getDeviceName(devices[i]) << std::endl;
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
exit(0);
|
||||
}
|
||||
else if (!strcmp(argv[i], "--device"))
|
||||
{
|
||||
if (++i >= argc || !parseUInt(argv[i], &deviceIndex))
|
||||
{
|
||||
std::cout << "Invalid device index" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(argv[i], "--arraysize") || !strcmp(argv[i], "-s"))
|
||||
{
|
||||
if (++i >= argc || !parseUInt(argv[i], &ARRAY_SIZE))
|
||||
{
|
||||
std::cout << "Invalid array size" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(argv[i], "--numtimes") || !strcmp(argv[i], "-n"))
|
||||
{
|
||||
if (++i >= argc || !parseUInt(argv[i], &NTIMES))
|
||||
{
|
||||
std::cout << "Invalid number of times" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(argv[i], "--float"))
|
||||
{
|
||||
useFloat = true;
|
||||
DATATYPE_SIZE = sizeof(float);
|
||||
}
|
||||
else if (!strcmp(argv[i], "--help") || !strcmp(argv[i], "-h"))
|
||||
{
|
||||
std::cout << std::endl;
|
||||
std::cout << "Usage: ./gpu-stream-ocl [OPTIONS]" << std::endl << std::endl;
|
||||
std::cout << "Options:" << std::endl;
|
||||
std::cout << " -h --help Print the message" << std::endl;
|
||||
std::cout << " --list List available devices" << std::endl;
|
||||
std::cout << " --device INDEX Select device at INDEX" << std::endl;
|
||||
std::cout << " -s --arraysize SIZE Use SIZE elements in the array" << std::endl;
|
||||
std::cout << " -n --numtimes NUM Run the test NUM times (NUM >= 2)" << std::endl;
|
||||
std::cout << " --float Use floats (rather than doubles)" << std::endl;
|
||||
std::cout << std::endl;
|
||||
exit(0);
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << "Unrecognized argument '" << argv[i] << "' (try '--help')"
|
||||
<< std::endl;
|
||||
exit(1);
|
||||
std::cout << i << ": " << getDeviceName(devices[i]) << std::endl;
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user