commit
b53fb1b3b2
18
Makefile
18
Makefile
@ -6,7 +6,8 @@ ifeq ($(PLATFORM), Darwin)
|
||||
LDLIBS = -framework OpenCL
|
||||
endif
|
||||
|
||||
all: gpu-stream-ocl gpu-stream-cuda
|
||||
all: gpu-stream-ocl gpu-stream-cuda gpu-stream-hip
|
||||
|
||||
|
||||
gpu-stream-ocl: ocl-stream.cpp common.o Makefile
|
||||
$(CXX) $(CXXFLAGS) -Wno-deprecated-declarations common.o $< -o $@ $(LDLIBS)
|
||||
@ -19,9 +20,22 @@ ifeq ($(shell which nvcc > /dev/null; echo $$?), 0)
|
||||
else
|
||||
$(error "Cannot find nvcc, please install CUDA toolkit")
|
||||
endif
|
||||
HIP_PATH?=../../..
|
||||
HIPCC=$(HIP_PATH)/bin/hipcc
|
||||
|
||||
hip-stream.o : hip-stream.cpp
|
||||
$(HIPCC) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
gpu-stream-hip: hip-stream.o common.o Makefile
|
||||
ifeq ($(shell which $(HIPCC) > /dev/null; echo $$?), 0)
|
||||
$(HIPCC) $(CXXFLAGS) common.o $< -lm -o $@
|
||||
else
|
||||
$(error "Cannot find $(HIPCC), please install HIP toolkit")
|
||||
endif
|
||||
|
||||
|
||||
.PHONY: clean
|
||||
|
||||
clean:
|
||||
rm -f gpu-stream-ocl gpu-stream-cuda *.o
|
||||
rm -f gpu-stream-ocl gpu-stream-cuda gpu-stream-hip *.o
|
||||
|
||||
|
||||
@ -13,6 +13,15 @@ Build the OpenCL and CUDA binaries with `make` (CUDA version requires CUDA >= v6
|
||||
|
||||
Run the OpenCL version with `./gpu-stream-ocl` and the CUDA version with `./gpu-stream-cuda`
|
||||
|
||||
For HIP version, follow the instructions on the following blog to properly install ROCK and ROCR drivers:
|
||||
http://gpuopen.com/getting-started-with-boltzmann-components-platforms-installation/
|
||||
Install the HCC compiler:
|
||||
https://bitbucket.org/multicoreware/hcc/wiki/Home
|
||||
Install HIP:
|
||||
https://github.com/GPUOpen-ProfessionalCompute-Tools/HIP
|
||||
|
||||
Build the HIP binaries with make gpu-stream-hip, run it with './gpu-stream-hip'
|
||||
|
||||
Android
|
||||
-------
|
||||
|
||||
|
||||
52
common.cpp
52
common.cpp
@ -39,10 +39,13 @@
|
||||
// Default array size 50 * 2^20 (50*8 Mebibytes double precision)
|
||||
// Use binary powers of two so divides 1024
|
||||
unsigned int ARRAY_SIZE = 52428800;
|
||||
size_t ARRAY_PAD_BYTES = 0;
|
||||
|
||||
unsigned int NTIMES = 10;
|
||||
|
||||
bool useFloat = false;
|
||||
unsigned int groups = 0;
|
||||
unsigned int groupSize = 1024;
|
||||
|
||||
unsigned int deviceIndex = 0;
|
||||
|
||||
@ -53,6 +56,25 @@ int parseUInt(const char *str, unsigned int *output)
|
||||
return !strlen(next);
|
||||
}
|
||||
|
||||
int parseSize(const char *str, size_t *output)
|
||||
{
|
||||
char *next;
|
||||
*output = strtoull(str, &next, 0);
|
||||
int l = strlen(str);
|
||||
if (l) {
|
||||
char c = str[l-1]; // last char.
|
||||
if ((c == 'k') || (c == 'K')) {
|
||||
*output *= 1024;
|
||||
}
|
||||
if ((c == 'm') || (c == 'M')) {
|
||||
*output *= (1024*1024);
|
||||
}
|
||||
|
||||
}
|
||||
return !strlen(next);
|
||||
}
|
||||
|
||||
|
||||
void parseArguments(int argc, char *argv[])
|
||||
{
|
||||
for (int i = 1; i < argc; i++)
|
||||
@ -86,10 +108,35 @@ void parseArguments(int argc, char *argv[])
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(argv[i], "--groups"))
|
||||
{
|
||||
if (++i >= argc || !parseUInt(argv[i], &groups))
|
||||
{
|
||||
std::cout << "Invalid group number" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(argv[i], "--groupSize"))
|
||||
{
|
||||
if (++i >= argc || !parseUInt(argv[i], &groupSize))
|
||||
{
|
||||
std::cout << "Invalid group size" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(argv[i], "--pad"))
|
||||
{
|
||||
if (++i >= argc || !parseSize(argv[i], &ARRAY_PAD_BYTES))
|
||||
{
|
||||
std::cout << "Invalid size" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
}
|
||||
else if (!strcmp(argv[i], "--float"))
|
||||
{
|
||||
useFloat = true;
|
||||
std::cout << "Warning: If number of iterations set >= 8, expect rounding errors with single precision" << std::endl;
|
||||
std::cout << "Warning: If number of iterations set >= 8, expect rounding errors with single precision, not apply to AMD device" << std::endl;
|
||||
}
|
||||
else if (!strcmp(argv[i], "--help") || !strcmp(argv[i], "-h"))
|
||||
{
|
||||
@ -101,6 +148,9 @@ void parseArguments(int argc, char *argv[])
|
||||
std::cout << " --device INDEX Select device at INDEX" << std::endl;
|
||||
std::cout << " -s --arraysize SIZE Use SIZE elements in the array" << std::endl;
|
||||
std::cout << " -n --numtimes NUM Run the test NUM times (NUM >= 2)" << std::endl;
|
||||
std::cout << " --groups Set number of groups to launch - each work-item proceses multiple array items" << std::endl;
|
||||
std::cout << " --groupSize Set size of each group (default 1024)" << std::endl;
|
||||
std::cout << " --pad Add additional array padding. Can use trailing K (KB) or M (MB)" << std::endl;
|
||||
std::cout << " --float Use floats (rather than doubles)" << std::endl;
|
||||
std::cout << std::endl;
|
||||
exit(0);
|
||||
|
||||
3
common.h
3
common.h
@ -48,8 +48,11 @@ extern void parseArguments(int argc, char *argv[]);
|
||||
extern void listDevices(void);
|
||||
|
||||
extern unsigned int ARRAY_SIZE;
|
||||
extern size_t ARRAY_PAD_BYTES;
|
||||
extern unsigned int NTIMES;
|
||||
|
||||
extern unsigned int groups;
|
||||
extern unsigned int groupSize;
|
||||
extern bool useFloat;
|
||||
|
||||
extern unsigned int deviceIndex;
|
||||
|
||||
110
cuda-stream.cu
110
cuda-stream.cu
@ -62,6 +62,59 @@ void check_cuda_error(void)
|
||||
}
|
||||
}
|
||||
|
||||
// looper function place more work inside each work item.
|
||||
// Goal is reduce the dispatch overhead for each group, and also give more controlover the order of memory operations
|
||||
template <typename T>
|
||||
__global__ void
|
||||
copy_looper(const T * a, T * c, int ARRAY_SIZE)
|
||||
{
|
||||
int offset = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
int stride = blockDim.x * gridDim.x;
|
||||
|
||||
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
|
||||
c[i] = a[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
mul_looper(T * b, const T * c, int ARRAY_SIZE)
|
||||
{
|
||||
int offset = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int stride = blockDim.x * gridDim.x;
|
||||
const T scalar = 3.0;
|
||||
|
||||
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
|
||||
b[i] = scalar * c[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
add_looper(const T * a, const T * b, T * c, int ARRAY_SIZE)
|
||||
{
|
||||
int offset = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int stride = blockDim.x * gridDim.x;
|
||||
|
||||
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
|
||||
c[i] = a[i] + b[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
triad_looper( T * a, const T * b, const T * c, int ARRAY_SIZE)
|
||||
{
|
||||
int offset = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int stride = blockDim.x * gridDim.x;
|
||||
const T scalar = 3.0;
|
||||
|
||||
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void copy(const T * a, T * c)
|
||||
{
|
||||
@ -106,6 +159,20 @@ int main(int argc, char *argv[])
|
||||
if (NTIMES < 2)
|
||||
throw std::runtime_error("Chosen number of times is invalid, must be >= 2");
|
||||
|
||||
// Config grid size and group size for kernel launching
|
||||
int gridSize;
|
||||
if (groups) {
|
||||
gridSize = groups * groupSize;
|
||||
} else {
|
||||
gridSize = ARRAY_SIZE;
|
||||
}
|
||||
|
||||
float operationsPerWorkitem = (float)ARRAY_SIZE / (float)gridSize;
|
||||
std::cout << "GridSize: " << gridSize << " work-items" << std::endl;
|
||||
std::cout << "GroupSize: " << groupSize << " work-items" << std::endl;
|
||||
std::cout << "Operations/Work-item: " << operationsPerWorkitem << std::endl;
|
||||
if (groups) std::cout << "Using looper kernels:" << std::endl;
|
||||
|
||||
std::cout << "Precision: ";
|
||||
if (useFloat) std::cout << "float";
|
||||
else std::cout << "double";
|
||||
@ -211,6 +278,10 @@ int main(int argc, char *argv[])
|
||||
cudaMemcpy(d_c, h_c, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
|
||||
check_cuda_error();
|
||||
|
||||
std::cout << "d_a=" << (void*)d_a << std::endl;
|
||||
std::cout << "d_b=" << (void*)d_b << std::endl;
|
||||
std::cout << "d_c=" << (void*)d_c << std::endl;
|
||||
|
||||
// Make sure the copies are finished
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
@ -226,10 +297,18 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
std::vector<double> times;
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (groups) {
|
||||
if (useFloat)
|
||||
copy_looper<float><<<gridSize,groupSize>>>((float*)d_a, (float*)d_c, ARRAY_SIZE);
|
||||
else
|
||||
copy_looper<double><<<gridSize,groupSize>>>((double*)d_a, (double*)d_c, ARRAY_SIZE);
|
||||
} else {
|
||||
if (useFloat)
|
||||
copy<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_c);
|
||||
else
|
||||
copy<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_c);
|
||||
}
|
||||
|
||||
check_cuda_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
@ -238,10 +317,17 @@ int main(int argc, char *argv[])
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (groups) {
|
||||
if (useFloat)
|
||||
mul_looper<float><<<gridSize,groupSize>>>((float*)d_b, (float*)d_c, ARRAY_SIZE);
|
||||
else
|
||||
mul_looper<double><<<gridSize,groupSize>>>((double*)d_b, (double*)d_c, ARRAY_SIZE);
|
||||
} else {
|
||||
if (useFloat)
|
||||
mul<<<ARRAY_SIZE/1024, 1024>>>((float*)d_b, (float*)d_c);
|
||||
else
|
||||
mul<<<ARRAY_SIZE/1024, 1024>>>((double*)d_b, (double*)d_c);
|
||||
}
|
||||
check_cuda_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
@ -250,10 +336,17 @@ int main(int argc, char *argv[])
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (groups) {
|
||||
if (useFloat)
|
||||
add_looper<float><<<gridSize,groupSize>>>((float*)d_a, (float*)d_b, (float*)d_c, ARRAY_SIZE);
|
||||
else
|
||||
add_looper<double><<<gridSize,groupSize>>>((double*)d_a, (double*)d_b, (double*)d_c, ARRAY_SIZE);
|
||||
} else {
|
||||
if (useFloat)
|
||||
add<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_b, (float*)d_c);
|
||||
else
|
||||
add<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_b, (double*)d_c);
|
||||
}
|
||||
check_cuda_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
@ -262,10 +355,17 @@ int main(int argc, char *argv[])
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (groups) {
|
||||
if (useFloat)
|
||||
triad_looper<float><<<gridSize,groupSize>>>((float*)d_a, (float*)d_b, (float*)d_c, ARRAY_SIZE);
|
||||
else
|
||||
triad_looper<double><<<gridSize,groupSize>>>((double*)d_a, (double*)d_b, (double*)d_c, ARRAY_SIZE);
|
||||
} else {
|
||||
if (useFloat)
|
||||
triad<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_b, (float*)d_c);
|
||||
else
|
||||
triad<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_b, (double*)d_c);
|
||||
}
|
||||
check_cuda_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
@ -318,6 +418,12 @@ int main(int argc, char *argv[])
|
||||
for (int j = 0; j < 4; j++)
|
||||
avg[j] /= (double)(NTIMES-1);
|
||||
|
||||
double geomean = 1.0;
|
||||
for (int j = 0; j < 4; j++) {
|
||||
geomean *= (sizes[j]/min[j]);
|
||||
}
|
||||
geomean = pow(geomean, 0.25);
|
||||
|
||||
// Display results
|
||||
std::string labels[] = {"Copy", "Mul", "Add", "Triad"};
|
||||
std::cout
|
||||
@ -338,6 +444,10 @@ int main(int argc, char *argv[])
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << avg[j]
|
||||
<< std::endl;
|
||||
}
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << "GEOMEAN"
|
||||
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * geomean
|
||||
<< std::endl;
|
||||
|
||||
// Free host vectors
|
||||
free(h_a);
|
||||
|
||||
531
hip-stream.cpp
Normal file
531
hip-stream.cpp
Normal file
@ -0,0 +1,531 @@
|
||||
#include "hip_runtime.h"
|
||||
/*=============================================================================
|
||||
*------------------------------------------------------------------------------
|
||||
* Copyright 2015: Tom Deakin, Simon McIntosh-Smith, University of Bristol HPC
|
||||
* Based on John D. McCalpin’s original STREAM benchmark for CPUs
|
||||
*------------------------------------------------------------------------------
|
||||
* License:
|
||||
* 1. You are free to use this program and/or to redistribute
|
||||
* this program.
|
||||
* 2. You are free to modify this program for your own use,
|
||||
* including commercial use, subject to the publication
|
||||
* restrictions in item 3.
|
||||
* 3. You are free to publish results obtained from running this
|
||||
* program, or from works that you derive from this program,
|
||||
* with the following limitations:
|
||||
* 3a. In order to be referred to as "GPU-STREAM benchmark results",
|
||||
* published results must be in conformance to the GPU-STREAM
|
||||
* Run Rules published at
|
||||
* http://github.com/UoB-HPC/GPU-STREAM/wiki/Run-Rules
|
||||
* and incorporated herein by reference.
|
||||
* The copyright holders retain the
|
||||
* right to determine conformity with the Run Rules.
|
||||
* 3b. Results based on modified source code or on runs not in
|
||||
* accordance with the GPU-STREAM Run Rules must be clearly
|
||||
* labelled whenever they are published. Examples of
|
||||
* proper labelling include:
|
||||
* "tuned GPU-STREAM benchmark results"
|
||||
* "based on a variant of the GPU-STREAM benchmark code"
|
||||
* Other comparable, clear and reasonable labelling is
|
||||
* acceptable.
|
||||
* 3c. Submission of results to the GPU-STREAM benchmark web site
|
||||
* is encouraged, but not required.
|
||||
* 4. Use of this program or creation of derived works based on this
|
||||
* program constitutes acceptance of these licensing restrictions.
|
||||
* 5. Absolutely no warranty is expressed or implied.
|
||||
*———————————————————————————————————-----------------------------------------*/
|
||||
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <vector>
|
||||
#include <chrono>
|
||||
#include <cfloat>
|
||||
#include <cmath>
|
||||
|
||||
//#include <cuda.h>
|
||||
#include "common.h"
|
||||
|
||||
std::string getDeviceName(int device);
|
||||
int getDriver(void);
|
||||
|
||||
// Code to check CUDA errors
|
||||
void check_cuda_error(void)
|
||||
{
|
||||
hipError_t err = hipGetLastError();
|
||||
if (err != hipSuccess)
|
||||
{
|
||||
std::cerr
|
||||
<< "Error: "
|
||||
<< hipGetErrorString(err)
|
||||
<< std::endl;
|
||||
exit(err);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// looper function place more work inside each work item.
|
||||
// Goal is reduce the dispatch overhead for each group, and also give more controlover the order of memory operations
|
||||
template <typename T>
|
||||
__global__ void
|
||||
copy_looper(hipLaunchParm lp, const T * a, T * c, int ARRAY_SIZE)
|
||||
{
|
||||
int offset = (hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x);
|
||||
int stride = hipBlockDim_x * hipGridDim_x;
|
||||
|
||||
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
|
||||
c[i] = a[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
mul_looper(hipLaunchParm lp, T * b, const T * c, int ARRAY_SIZE)
|
||||
{
|
||||
int offset = hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x;
|
||||
int stride = hipBlockDim_x * hipGridDim_x;
|
||||
const T scalar = 3.0;
|
||||
|
||||
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
|
||||
b[i] = scalar * c[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
add_looper(hipLaunchParm lp, const T * a, const T * b, T * c, int ARRAY_SIZE)
|
||||
{
|
||||
int offset = hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x;
|
||||
int stride = hipBlockDim_x * hipGridDim_x;
|
||||
|
||||
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
|
||||
c[i] = a[i] + b[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
triad_looper(hipLaunchParm lp, T * a, const T * b, const T * c, int ARRAY_SIZE)
|
||||
{
|
||||
int offset = hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x;
|
||||
int stride = hipBlockDim_x * hipGridDim_x;
|
||||
const T scalar = 3.0;
|
||||
|
||||
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
copy(hipLaunchParm lp, const T * a, T * c)
|
||||
{
|
||||
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||
c[i] = a[i];
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
mul(hipLaunchParm lp, T * b, const T * c)
|
||||
{
|
||||
const T scalar = 3.0;
|
||||
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||
b[i] = scalar * c[i];
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
add(hipLaunchParm lp, const T * a, const T * b, T * c)
|
||||
{
|
||||
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||
c[i] = a[i] + b[i];
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
triad(hipLaunchParm lp, T * a, const T * b, const T * c)
|
||||
{
|
||||
const T scalar = 3.0;
|
||||
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
|
||||
// Print out run information
|
||||
std::cout
|
||||
<< "GPU-STREAM" << std::endl
|
||||
<< "Version: " << VERSION_STRING << std::endl
|
||||
<< "Implementation: HIP" << std::endl;
|
||||
|
||||
parseArguments(argc, argv);
|
||||
|
||||
if (NTIMES < 2)
|
||||
throw std::runtime_error("Chosen number of times is invalid, must be >= 2");
|
||||
|
||||
// Config grid size and group size for kernel launching
|
||||
int gridSize;
|
||||
if (groups) {
|
||||
gridSize = groups * groupSize;
|
||||
} else {
|
||||
gridSize = ARRAY_SIZE;
|
||||
}
|
||||
|
||||
float operationsPerWorkitem = (float)ARRAY_SIZE / (float)gridSize;
|
||||
std::cout << "GridSize: " << gridSize << " work-items" << std::endl;
|
||||
std::cout << "GroupSize: " << groupSize << " work-items" << std::endl;
|
||||
std::cout << "Operations/Work-item: " << operationsPerWorkitem << std::endl;
|
||||
if (groups) std::cout << "Using looper kernels:" << std::endl;
|
||||
|
||||
std::cout << "Precision: ";
|
||||
if (useFloat) std::cout << "float";
|
||||
else std::cout << "double";
|
||||
std::cout << std::endl << std::endl;
|
||||
|
||||
std::cout << "Running kernels " << NTIMES << " times" << std::endl;
|
||||
|
||||
if (ARRAY_SIZE % 1024 != 0)
|
||||
{
|
||||
unsigned int OLD_ARRAY_SIZE = ARRAY_SIZE;
|
||||
ARRAY_SIZE -= ARRAY_SIZE % 1024;
|
||||
std::cout
|
||||
<< "Warning: array size must divide 1024" << std::endl
|
||||
<< "Resizing array from " << OLD_ARRAY_SIZE
|
||||
<< " to " << ARRAY_SIZE << std::endl;
|
||||
if (ARRAY_SIZE == 0)
|
||||
throw std::runtime_error("Array size must be >= 1024");
|
||||
}
|
||||
|
||||
// Get precision (used to reset later)
|
||||
std::streamsize ss = std::cout.precision();
|
||||
|
||||
size_t DATATYPE_SIZE;
|
||||
|
||||
if (useFloat)
|
||||
{
|
||||
DATATYPE_SIZE = sizeof(float);
|
||||
}
|
||||
else
|
||||
{
|
||||
DATATYPE_SIZE = sizeof(double);
|
||||
}
|
||||
|
||||
// Display number of bytes in array
|
||||
std::cout << std::setprecision(1) << std::fixed
|
||||
<< "Array size: " << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
||||
<< " (=" << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
||||
<< " " << ARRAY_PAD_BYTES << " bytes padding"
|
||||
<< std::endl;
|
||||
std::cout << "Total size: " << 3.0*(ARRAY_SIZE*DATATYPE_SIZE + ARRAY_PAD_BYTES) /1024.0/1024.0 << " MB"
|
||||
<< " (=" << 3.0*(ARRAY_SIZE*DATATYPE_SIZE + ARRAY_PAD_BYTES) /1024.0/1024.0/1024.0 << " GB)"
|
||||
<< std::endl;
|
||||
|
||||
// Reset precision
|
||||
std::cout.precision(ss);
|
||||
|
||||
// Check device index is in range
|
||||
int count;
|
||||
hipGetDeviceCount(&count);
|
||||
check_cuda_error();
|
||||
if (deviceIndex >= count)
|
||||
throw std::runtime_error("Chosen device index is invalid");
|
||||
hipSetDevice(deviceIndex);
|
||||
check_cuda_error();
|
||||
|
||||
|
||||
hipDeviceProp_t props;
|
||||
hipGetDeviceProperties(&props, deviceIndex);
|
||||
|
||||
// Print out device name
|
||||
std::cout << "Using HIP device " << getDeviceName(deviceIndex) << " (compute_units=" << props.multiProcessorCount << ")" << std::endl;
|
||||
|
||||
// Print out device HIP driver version
|
||||
std::cout << "Driver: " << getDriver() << std::endl;
|
||||
|
||||
|
||||
|
||||
|
||||
// Check buffers fit on the device
|
||||
if (props.totalGlobalMem < 3*DATATYPE_SIZE*ARRAY_SIZE)
|
||||
throw std::runtime_error("Device does not have enough memory for all 3 buffers");
|
||||
|
||||
//int cus = props.multiProcessorCount;
|
||||
|
||||
// Create host vectors
|
||||
void * h_a = malloc(ARRAY_SIZE*DATATYPE_SIZE );
|
||||
void * h_b = malloc(ARRAY_SIZE*DATATYPE_SIZE );
|
||||
void * h_c = malloc(ARRAY_SIZE*DATATYPE_SIZE );
|
||||
|
||||
// Initialise arrays
|
||||
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
|
||||
{
|
||||
if (useFloat)
|
||||
{
|
||||
((float*)h_a)[i] = 1.0f;
|
||||
((float*)h_b)[i] = 2.0f;
|
||||
((float*)h_c)[i] = 0.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
((double*)h_a)[i] = 1.0;
|
||||
((double*)h_b)[i] = 2.0;
|
||||
((double*)h_c)[i] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Create device buffers
|
||||
char * d_a, * d_b, *d_c;
|
||||
hipMalloc(&d_a, ARRAY_SIZE*DATATYPE_SIZE + ARRAY_PAD_BYTES);
|
||||
check_cuda_error();
|
||||
hipMalloc(&d_b, ARRAY_SIZE*DATATYPE_SIZE + ARRAY_PAD_BYTES);
|
||||
d_b += ARRAY_PAD_BYTES;
|
||||
check_cuda_error();
|
||||
hipMalloc(&d_c, ARRAY_SIZE*DATATYPE_SIZE + ARRAY_PAD_BYTES);
|
||||
d_c += ARRAY_PAD_BYTES;
|
||||
check_cuda_error();
|
||||
|
||||
// Copy host memory to device
|
||||
hipMemcpy(d_a, h_a, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyHostToDevice);
|
||||
check_cuda_error();
|
||||
hipMemcpy(d_b, h_b, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyHostToDevice);
|
||||
check_cuda_error();
|
||||
hipMemcpy(d_c, h_c, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyHostToDevice);
|
||||
check_cuda_error();
|
||||
|
||||
|
||||
std::cout << "d_a=" << (void*)d_a << std::endl;
|
||||
std::cout << "d_b=" << (void*)d_b << std::endl;
|
||||
std::cout << "d_c=" << (void*)d_c << std::endl;
|
||||
|
||||
// Make sure the copies are finished
|
||||
hipDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
|
||||
|
||||
|
||||
// List of times
|
||||
std::vector< std::vector<double> > timings;
|
||||
|
||||
// Declare timers
|
||||
std::chrono::high_resolution_clock::time_point t1, t2;
|
||||
|
||||
// Main loop
|
||||
for (unsigned int k = 0; k < NTIMES; k++)
|
||||
{
|
||||
std::vector<double> times;
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (groups) {
|
||||
if (useFloat)
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(copy_looper<float>), dim3(gridSize), dim3(groupSize), 0, 0, (float*)d_a, (float*)d_c, ARRAY_SIZE);
|
||||
else
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(copy_looper<double>), dim3(gridSize), dim3(groupSize), 0, 0, (double*)d_a, (double*)d_c, ARRAY_SIZE);
|
||||
} else {
|
||||
if (useFloat)
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(copy), dim3(ARRAY_SIZE/groupSize), dim3(groupSize), 0, 0, (float*)d_a, (float*)d_c);
|
||||
else
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(copy), dim3(ARRAY_SIZE/groupSize), dim3(groupSize), 0, 0, (double*)d_a, (double*)d_c);
|
||||
}
|
||||
check_cuda_error();
|
||||
hipDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (groups) {
|
||||
if (useFloat)
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(mul_looper), dim3(gridSize), dim3(groupSize), 0, 0, (float*)d_b, (float*)d_c, ARRAY_SIZE);
|
||||
else
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(mul_looper), dim3(gridSize), dim3(groupSize), 0, 0, (double*)d_b, (double*)d_c, ARRAY_SIZE);
|
||||
} else {
|
||||
if (useFloat)
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(mul), dim3(ARRAY_SIZE/groupSize), dim3(groupSize), 0, 0, (float*)d_b, (float*)d_c);
|
||||
else
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(mul), dim3(ARRAY_SIZE/groupSize), dim3(groupSize), 0, 0, (double*)d_b, (double*)d_c);
|
||||
}
|
||||
check_cuda_error();
|
||||
hipDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (groups) {
|
||||
if (useFloat)
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(add_looper), dim3(gridSize), dim3(groupSize), 0, 0, (float*)d_a, (float*)d_b, (float*)d_c, ARRAY_SIZE);
|
||||
else
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(add_looper), dim3(gridSize), dim3(groupSize), 0, 0, (double*)d_a, (double*)d_b, (double*)d_c, ARRAY_SIZE);
|
||||
} else {
|
||||
if (useFloat)
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(add), dim3(ARRAY_SIZE/groupSize), dim3(groupSize), 0, 0, (float*)d_a, (float*)d_b, (float*)d_c);
|
||||
else
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(add), dim3(ARRAY_SIZE/groupSize), dim3(groupSize), 0, 0, (double*)d_a, (double*)d_b, (double*)d_c);
|
||||
}
|
||||
check_cuda_error();
|
||||
hipDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (groups) {
|
||||
if (useFloat)
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(triad_looper), dim3(gridSize), dim3(groupSize), 0, 0, (float*)d_a, (float*)d_b, (float*)d_c, ARRAY_SIZE);
|
||||
else
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(triad_looper), dim3(gridSize), dim3(groupSize), 0, 0, (double*)d_a, (double*)d_b, (double*)d_c, ARRAY_SIZE);
|
||||
} else {
|
||||
if (useFloat)
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(triad), dim3(ARRAY_SIZE/groupSize), dim3(groupSize), 0, 0, (float*)d_a, (float*)d_b, (float*)d_c);
|
||||
else
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(triad), dim3(ARRAY_SIZE/groupSize), dim3(groupSize), 0, 0, (double*)d_a, (double*)d_b, (double*)d_c);
|
||||
}
|
||||
|
||||
check_cuda_error();
|
||||
hipDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
timings.push_back(times);
|
||||
|
||||
}
|
||||
|
||||
// Check solutions
|
||||
hipMemcpy(h_a, d_a, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyDeviceToHost);
|
||||
check_cuda_error();
|
||||
hipMemcpy(h_b, d_b, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyDeviceToHost);
|
||||
check_cuda_error();
|
||||
hipMemcpy(h_c, d_c, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyDeviceToHost);
|
||||
check_cuda_error();
|
||||
|
||||
if (useFloat)
|
||||
{
|
||||
check_solution<float>(h_a, h_b, h_c);
|
||||
}
|
||||
else
|
||||
{
|
||||
check_solution<double>(h_a, h_b, h_c);
|
||||
}
|
||||
|
||||
// Crunch results
|
||||
size_t sizes[4] = {
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE
|
||||
};
|
||||
double min[4] = {DBL_MAX, DBL_MAX, DBL_MAX, DBL_MAX};
|
||||
double max[4] = {0.0, 0.0, 0.0, 0.0};
|
||||
double avg[4] = {0.0, 0.0, 0.0, 0.0};
|
||||
|
||||
// Ignore first result
|
||||
for (unsigned int i = 1; i < NTIMES; i++)
|
||||
{
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
avg[j] += timings[i][j];
|
||||
min[j] = std::min(min[j], timings[i][j]);
|
||||
max[j] = std::max(max[j], timings[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 0; j < 4; j++) {
|
||||
avg[j] /= (double)(NTIMES-1);
|
||||
}
|
||||
|
||||
double geomean = 1.0;
|
||||
for (int j = 0; j < 4; j++) {
|
||||
geomean *= (sizes[j]/min[j]);
|
||||
}
|
||||
geomean = pow(geomean, 0.25);
|
||||
|
||||
// Display results
|
||||
std::string labels[] = {"Copy", "Mul", "Add", "Triad"};
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << "Function"
|
||||
<< std::left << std::setw(12) << "MBytes/sec"
|
||||
<< std::left << std::setw(12) << "Min (sec)"
|
||||
<< std::left << std::setw(12) << "Max"
|
||||
<< std::left << std::setw(12) << "Average"
|
||||
<< std::endl;
|
||||
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << labels[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * sizes[j]/min[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << min[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << max[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << avg[j]
|
||||
<< std::endl;
|
||||
}
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << "GEOMEAN"
|
||||
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * geomean
|
||||
<< std::endl;
|
||||
|
||||
// Free host vectors
|
||||
free(h_a);
|
||||
free(h_b);
|
||||
free(h_c);
|
||||
|
||||
// Free cuda buffers
|
||||
hipFree(d_a);
|
||||
check_cuda_error();
|
||||
hipFree(d_b);
|
||||
check_cuda_error();
|
||||
hipFree(d_c);
|
||||
check_cuda_error();
|
||||
|
||||
}
|
||||
|
||||
std::string getDeviceName(int device)
|
||||
{
|
||||
struct hipDeviceProp_t prop;
|
||||
hipGetDeviceProperties(&prop, device);
|
||||
check_cuda_error();
|
||||
return std::string(prop.name);
|
||||
}
|
||||
|
||||
int getDriver(void)
|
||||
{
|
||||
int driver;
|
||||
hipDriverGetVersion(&driver);
|
||||
check_cuda_error();
|
||||
return driver;
|
||||
}
|
||||
|
||||
void listDevices(void)
|
||||
{
|
||||
// Get number of devices
|
||||
int count;
|
||||
hipGetDeviceCount(&count);
|
||||
check_cuda_error();
|
||||
|
||||
// Print device names
|
||||
if (count == 0)
|
||||
{
|
||||
std::cout << "No devices found." << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << std::endl;
|
||||
std::cout << "Devices:" << std::endl;
|
||||
for (int i = 0; i < count; i++)
|
||||
{
|
||||
std::cout << i << ": " << getDeviceName(i) << std::endl;
|
||||
check_cuda_error();
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
22
results/cuda/nvidia-gtx-titan_x.txt
Normal file
22
results/cuda/nvidia-gtx-titan_x.txt
Normal file
@ -0,0 +1,22 @@
|
||||
GPU-STREAM
|
||||
Version: 1.0
|
||||
Implementation: HIP
|
||||
GridSize: 52428800 work-items
|
||||
GroupSize: 1024 work-items
|
||||
Operations/Work-item: 1
|
||||
Precision: double
|
||||
|
||||
Running kernels 10 times
|
||||
Array size: 400.0 MB (=0.4 GB) 0 bytes padding
|
||||
Total size: 1200.0 MB (=1.2 GB)
|
||||
Using HIP device GeForce GTX TITAN X (compute_units=24)
|
||||
Driver: 4
|
||||
d_a=0x1306d80000
|
||||
d_b=0x131fd80000
|
||||
d_c=0x1338d80000
|
||||
Function MBytes/sec Min (sec) Max Average
|
||||
Copy 263042.207 0.00319 0.00320 0.00319
|
||||
Mul 262972.033 0.00319 0.00320 0.00319
|
||||
Add 268732.653 0.00468 0.00469 0.00469
|
||||
Triad 268706.197 0.00468 0.00469 0.00469
|
||||
GEOMEAN 265847.929
|
||||
15
results/hip/amd-fiji-nano.txt
Normal file
15
results/hip/amd-fiji-nano.txt
Normal file
@ -0,0 +1,15 @@
|
||||
GPU-STREAM
|
||||
Version: 1.0
|
||||
Implementation: CUDA
|
||||
Precision: double
|
||||
|
||||
Running kernels 10 times
|
||||
Array size: 400.0 MB (=0.4 GB)
|
||||
Total size: 1200.0 MB (=1.2 GB)
|
||||
Using CUDA device Fiji
|
||||
Driver: 4
|
||||
Function MBytes/sec Min (sec) Max Average
|
||||
Copy 375822.410 0.00223 0.00225 0.00224
|
||||
Mul 375086.879 0.00224 0.00227 0.00224
|
||||
Add 425650.718 0.00296 0.00298 0.00297
|
||||
Triad 424710.113 0.00296 0.00298 0.00298
|
||||
22
results/hip/nvidia-gtx-titan_x.txt
Normal file
22
results/hip/nvidia-gtx-titan_x.txt
Normal file
@ -0,0 +1,22 @@
|
||||
GPU-STREAM
|
||||
Version: 1.0
|
||||
Implementation: HIP
|
||||
GridSize: 52428800 work-items
|
||||
GroupSize: 1024 work-items
|
||||
Operations/Work-item: 1
|
||||
Precision: double
|
||||
|
||||
Running kernels 10 times
|
||||
Array size: 400.0 MB (=0.4 GB) 0 bytes padding
|
||||
Total size: 1200.0 MB (=1.2 GB)
|
||||
Using HIP device GeForce GTX TITAN X (compute_units=24)
|
||||
Driver: 4
|
||||
d_a=0x1306d80000
|
||||
d_b=0x131fd80000
|
||||
d_c=0x1338d80000
|
||||
Function MBytes/sec Min (sec) Max Average
|
||||
Copy 263042.207 0.00319 0.00320 0.00319
|
||||
Mul 262972.033 0.00319 0.00320 0.00319
|
||||
Add 268732.653 0.00468 0.00469 0.00469
|
||||
Triad 268706.197 0.00468 0.00469 0.00469
|
||||
GEOMEAN 265847.929
|
||||
4
runcuda.sh
Executable file
4
runcuda.sh
Executable file
@ -0,0 +1,4 @@
|
||||
./gpu-stream-cuda
|
||||
./gpu-stream-cuda --groups 64 --groupSize 256
|
||||
./gpu-stream-cuda --float
|
||||
./gpu-stream-cuda --float --groups 64 --groupSize 256
|
||||
Loading…
Reference in New Issue
Block a user