Port float code to CUDA version
This commit is contained in:
parent
e7fc832771
commit
c3ad5edcb3
143
cuda-stream.cu
143
cuda-stream.cu
@ -13,6 +13,9 @@
|
||||
unsigned int ARRAY_SIZE = 50000000;
|
||||
unsigned int NTIMES = 10;
|
||||
|
||||
size_t DATATYPE_SIZE = sizeof(double);
|
||||
bool useFloat = false;
|
||||
|
||||
#define MIN(a,b) ((a) < (b)) ? (a) : (b)
|
||||
#define MAX(a,b) ((a) > (b)) ? (a) : (b)
|
||||
|
||||
@ -21,14 +24,6 @@ unsigned int NTIMES = 10;
|
||||
void parseArguments(int argc, char *argv[]);
|
||||
std::string getDeviceName(int device);
|
||||
|
||||
struct badtype : public std::exception
|
||||
{
|
||||
virtual const char * what () const throw ()
|
||||
{
|
||||
return "Datatype is not 4 or 8";
|
||||
}
|
||||
};
|
||||
|
||||
struct invaliddevice : public std::exception
|
||||
{
|
||||
virtual const char * what () const throw ()
|
||||
@ -46,27 +41,37 @@ struct badntimes : public std::exception
|
||||
};
|
||||
|
||||
size_t sizes[4] = {
|
||||
2 * sizeof(DATATYPE) * ARRAY_SIZE,
|
||||
2 * sizeof(DATATYPE) * ARRAY_SIZE,
|
||||
3 * sizeof(DATATYPE) * ARRAY_SIZE,
|
||||
3 * sizeof(DATATYPE) * ARRAY_SIZE
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE
|
||||
};
|
||||
|
||||
void check_solution(DATATYPE * a, DATATYPE * b, DATATYPE * c)
|
||||
void check_solution(void* a, void* b, void* c)
|
||||
{
|
||||
// Generate correct solution
|
||||
DATATYPE golda = 1.0;
|
||||
DATATYPE goldb = 2.0;
|
||||
DATATYPE goldc = 0.0;
|
||||
double golda = 1.0;
|
||||
double goldb = 2.0;
|
||||
double goldc = 0.0;
|
||||
float goldaf = 1.0;
|
||||
float goldbf = 2.0;
|
||||
float goldcf = 0.0;
|
||||
|
||||
const DATATYPE scalar = 3.0;
|
||||
const double scalar = 3.0;
|
||||
const float scalarf = 3.0;
|
||||
|
||||
for (unsigned int i = 0; i < NTIMES; i++)
|
||||
{
|
||||
// Double
|
||||
goldc = golda;
|
||||
goldb = scalar * goldc;
|
||||
goldc = golda + goldb;
|
||||
golda = goldb + scalar * goldc;
|
||||
// Float
|
||||
goldcf = goldaf;
|
||||
goldbf = scalarf * goldcf;
|
||||
goldcf = goldaf + goldbf;
|
||||
goldaf = goldbf + scalarf * goldcf;
|
||||
}
|
||||
|
||||
// Calculate average error
|
||||
@ -75,18 +80,26 @@ void check_solution(DATATYPE * a, DATATYPE * b, DATATYPE * c)
|
||||
double errc = 0.0;
|
||||
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
|
||||
{
|
||||
erra += fabs(a[i] - golda);
|
||||
errb += fabs(b[i] - goldb);
|
||||
errc += fabs(c[i] - goldc);
|
||||
if (useFloat)
|
||||
{
|
||||
erra += fabsf(((float*)a)[i] - goldaf);
|
||||
errb += fabsf(((float*)b)[i] - goldbf);
|
||||
errc += fabsf(((float*)c)[i] - goldcf);
|
||||
}
|
||||
else
|
||||
{
|
||||
erra += fabs(((double*)a)[i] - (double)golda);
|
||||
errb += fabs(((double*)b)[i] - (double)goldb);
|
||||
errc += fabs(((double*)c)[i] - (double)goldc);
|
||||
}
|
||||
}
|
||||
erra /= (double)ARRAY_SIZE;
|
||||
errb /= (double)ARRAY_SIZE;
|
||||
errc /= (double)ARRAY_SIZE;
|
||||
|
||||
double epsi;
|
||||
if (sizeof(DATATYPE) == 4) epsi = 1.0E-6;
|
||||
else if (sizeof(DATATYPE) == 8) epsi = 1.0E-13;
|
||||
else throw badtype();
|
||||
if (useFloat) epsi = 1.0E-6;
|
||||
else epsi = 1.0E-13;
|
||||
|
||||
if (erra > epsi)
|
||||
std::cout
|
||||
@ -102,28 +115,33 @@ void check_solution(DATATYPE * a, DATATYPE * b, DATATYPE * c)
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
const DATATYPE scalar = 3.0;
|
||||
|
||||
__global__ void copy(const DATATYPE * a, DATATYPE * c)
|
||||
template <typename T>
|
||||
__global__ void copy(const T * a, T * c)
|
||||
{
|
||||
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
c[i] = a[i];
|
||||
}
|
||||
|
||||
__global__ void mul(DATATYPE * b, const DATATYPE * c)
|
||||
template <typename T>
|
||||
__global__ void mul(T * b, const T * c)
|
||||
{
|
||||
const T scalar = 3.0;
|
||||
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
b[i] = scalar * c[i];
|
||||
}
|
||||
|
||||
__global__ void add(const DATATYPE * a, const DATATYPE * b, DATATYPE * c)
|
||||
template <typename T>
|
||||
__global__ void add(const T * a, const T * b, T * c)
|
||||
{
|
||||
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
c[i] = a[i] + b[i];
|
||||
}
|
||||
|
||||
__global__ void triad(DATATYPE * a, const DATATYPE * b, const DATATYPE * c)
|
||||
template <typename T>
|
||||
__global__ void triad(T * a, const T * b, const T * c)
|
||||
{
|
||||
const T scalar = 3.0;
|
||||
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
}
|
||||
@ -166,28 +184,37 @@ int main(int argc, char *argv[])
|
||||
|
||||
|
||||
// Create host vectors
|
||||
DATATYPE * h_a = (DATATYPE *) malloc(ARRAY_SIZE*sizeof(DATATYPE));
|
||||
DATATYPE * h_b = (DATATYPE *) malloc(ARRAY_SIZE*sizeof(DATATYPE));
|
||||
DATATYPE * h_c = (DATATYPE *) malloc(ARRAY_SIZE*sizeof(DATATYPE));
|
||||
void * h_a = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||
void * h_b = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||
void * h_c = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||
|
||||
// Initilise host vectors
|
||||
// Initilise arrays
|
||||
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
|
||||
{
|
||||
h_a[i] = 1.0;
|
||||
h_b[i] = 2.0;
|
||||
h_c[i] = 0.0;
|
||||
if (useFloat)
|
||||
{
|
||||
((float*)h_a)[i] = 1.0;
|
||||
((float*)h_b)[i] = 2.0;
|
||||
((float*)h_c)[i] = 0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
((double*)h_a)[i] = 1.0;
|
||||
((double*)h_b)[i] = 2.0;
|
||||
((double*)h_c)[i] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Create device buffers
|
||||
DATATYPE * d_a, * d_b, *d_c;
|
||||
cudaMalloc(&d_a, ARRAY_SIZE*sizeof(DATATYPE));
|
||||
cudaMalloc(&d_b, ARRAY_SIZE*sizeof(DATATYPE));
|
||||
cudaMalloc(&d_c, ARRAY_SIZE*sizeof(DATATYPE));
|
||||
void * d_a, * d_b, *d_c;
|
||||
cudaMalloc(&d_a, ARRAY_SIZE*DATATYPE_SIZE);
|
||||
cudaMalloc(&d_b, ARRAY_SIZE*DATATYPE_SIZE);
|
||||
cudaMalloc(&d_c, ARRAY_SIZE*DATATYPE_SIZE);
|
||||
|
||||
// Copy host memory to device
|
||||
cudaMemcpy(d_a, h_a, ARRAY_SIZE*sizeof(DATATYPE), cudaMemcpyHostToDevice);
|
||||
cudaMemcpy(d_b, h_b, ARRAY_SIZE*sizeof(DATATYPE), cudaMemcpyHostToDevice);
|
||||
cudaMemcpy(d_c, h_c, ARRAY_SIZE*sizeof(DATATYPE), cudaMemcpyHostToDevice);
|
||||
cudaMemcpy(d_a, h_a, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
|
||||
cudaMemcpy(d_b, h_b, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
|
||||
cudaMemcpy(d_c, h_c, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
|
||||
|
||||
// Make sure the copies are finished
|
||||
cudaDeviceSynchronize();
|
||||
@ -203,28 +230,40 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
std::vector<double> times;
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
copy<<<ARRAY_SIZE/1024, 1024>>>(d_a, d_c);
|
||||
if (useFloat)
|
||||
copy<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_c);
|
||||
else
|
||||
copy<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_c);
|
||||
cudaDeviceSynchronize();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
mul<<<ARRAY_SIZE/1024, 1024>>>(d_b, d_c);
|
||||
if (useFloat)
|
||||
mul<<<ARRAY_SIZE/1024, 1024>>>((float*)d_b, (float*)d_c);
|
||||
else
|
||||
mul<<<ARRAY_SIZE/1024, 1024>>>((double*)d_b, (double*)d_c);
|
||||
cudaDeviceSynchronize();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
add<<<ARRAY_SIZE/1024, 1024>>>(d_a, d_b, d_c);
|
||||
if (useFloat)
|
||||
add<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_b, (float*)d_c);
|
||||
else
|
||||
add<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_b, (double*)d_c);
|
||||
cudaDeviceSynchronize();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
triad<<<ARRAY_SIZE/1024, 1024>>>(d_a, d_b, d_c);
|
||||
if (useFloat)
|
||||
triad<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_b, (float*)d_c);
|
||||
else
|
||||
triad<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_b, (double*)d_c);
|
||||
cudaDeviceSynchronize();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
@ -234,9 +273,9 @@ int main(int argc, char *argv[])
|
||||
}
|
||||
|
||||
// Check solutions
|
||||
cudaMemcpy(h_a, d_a, ARRAY_SIZE*sizeof(DATATYPE), cudaMemcpyDeviceToHost);
|
||||
cudaMemcpy(h_b, d_b, ARRAY_SIZE*sizeof(DATATYPE), cudaMemcpyDeviceToHost);
|
||||
cudaMemcpy(h_c, d_c, ARRAY_SIZE*sizeof(DATATYPE), cudaMemcpyDeviceToHost);
|
||||
cudaMemcpy(h_a, d_a, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
|
||||
cudaMemcpy(h_b, d_b, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
|
||||
cudaMemcpy(h_c, d_c, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
|
||||
check_solution(h_a, h_b, h_c);
|
||||
|
||||
// Crunch results
|
||||
@ -359,6 +398,11 @@ void parseArguments(int argc, char *argv[])
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(argv[i], "--float"))
|
||||
{
|
||||
useFloat = true;
|
||||
DATATYPE_SIZE = sizeof(float);
|
||||
}
|
||||
else if (!strcmp(argv[i], "--help") || !strcmp(argv[i], "-h"))
|
||||
{
|
||||
std::cout << std::endl;
|
||||
@ -369,6 +413,7 @@ void parseArguments(int argc, char *argv[])
|
||||
std::cout << " --device INDEX Select device at INDEX" << std::endl;
|
||||
std::cout << " -s --arraysize SIZE Use SIZE elements in the array" << std::endl;
|
||||
std::cout << " -n --numtimes NUM Run the test NUM times (NUM >= 2)" << std::endl;
|
||||
std::cout << " --float Use floats (rather than doubles)" << std::endl;
|
||||
std::cout << std::endl;
|
||||
exit(0);
|
||||
}
|
||||
|
||||
Loading…
Reference in New Issue
Block a user