Improve performance of CUDA dot implementation

This commit is contained in:
James Price 2016-10-24 21:42:39 +01:00
parent d5482b74f4
commit dfc79eeb4d
2 changed files with 11 additions and 8 deletions

View File

@ -46,7 +46,7 @@ CUDAStream<T>::CUDAStream(const unsigned int ARRAY_SIZE, const int device_index)
array_size = ARRAY_SIZE; array_size = ARRAY_SIZE;
// Allocate the host array for partial sums for dot kernels // Allocate the host array for partial sums for dot kernels
sums = (T*)malloc(sizeof(T) * (ARRAY_SIZE/TBSIZE)); sums = (T*)malloc(sizeof(T) * DOT_NUM_BLOCKS);
// Check buffers fit on the device // Check buffers fit on the device
cudaDeviceProp props; cudaDeviceProp props;
@ -61,7 +61,7 @@ CUDAStream<T>::CUDAStream(const unsigned int ARRAY_SIZE, const int device_index)
check_error(); check_error();
cudaMalloc(&d_c, ARRAY_SIZE*sizeof(T)); cudaMalloc(&d_c, ARRAY_SIZE*sizeof(T));
check_error(); check_error();
cudaMalloc(&d_sum, (ARRAY_SIZE/TBSIZE)*sizeof(T)); cudaMalloc(&d_sum, DOT_NUM_BLOCKS*sizeof(T));
check_error(); check_error();
} }
@ -171,16 +171,18 @@ void CUDAStream<T>::triad()
} }
template <class T> template <class T>
__global__ void dot_kernel(const T * a, const T * b, T * sum) __global__ void dot_kernel(const T * a, const T * b, T * sum, unsigned int array_size)
{ {
extern __shared__ __align__(sizeof(T)) unsigned char smem[]; extern __shared__ __align__(sizeof(T)) unsigned char smem[];
T *tb_sum = reinterpret_cast<T*>(smem); T *tb_sum = reinterpret_cast<T*>(smem);
const int i = blockDim.x * blockIdx.x + threadIdx.x; int i = blockDim.x * blockIdx.x + threadIdx.x;
const size_t local_i = threadIdx.x; const size_t local_i = threadIdx.x;
tb_sum[local_i] = a[i] * b[i]; tb_sum[local_i] = 0.0;
for (; i < array_size; i += blockDim.x*gridDim.x)
tb_sum[local_i] += a[i] * b[i];
for (int offset = blockDim.x / 2; offset > 0; offset /= 2) for (int offset = blockDim.x / 2; offset > 0; offset /= 2)
{ {
@ -198,14 +200,14 @@ __global__ void dot_kernel(const T * a, const T * b, T * sum)
template <class T> template <class T>
T CUDAStream<T>::dot() T CUDAStream<T>::dot()
{ {
dot_kernel<<<array_size/TBSIZE, TBSIZE, sizeof(T)*TBSIZE>>>(d_a, d_b, d_sum); dot_kernel<<<DOT_NUM_BLOCKS, TBSIZE, sizeof(T)*TBSIZE>>>(d_a, d_b, d_sum, array_size);
check_error(); check_error();
cudaMemcpy(sums, d_sum, (array_size/TBSIZE)*sizeof(T), cudaMemcpyDeviceToHost); cudaMemcpy(sums, d_sum, DOT_NUM_BLOCKS*sizeof(T), cudaMemcpyDeviceToHost);
check_error(); check_error();
T sum = 0.0; T sum = 0.0;
for (int i = 0; i < (array_size/TBSIZE); i++) for (int i = 0; i < DOT_NUM_BLOCKS; i++)
sum += sums[i]; sum += sums[i];
return sum; return sum;

View File

@ -16,6 +16,7 @@
#define IMPLEMENTATION_STRING "CUDA" #define IMPLEMENTATION_STRING "CUDA"
#define TBSIZE 1024 #define TBSIZE 1024
#define DOT_NUM_BLOCKS 256
template <class T> template <class T>
class CUDAStream : public Stream<T> class CUDAStream : public Stream<T>