Retain 1.2.1 and 2020 versions of SYCL

This commit is contained in:
Tom Deakin 2021-12-09 11:26:17 +00:00
parent edcc3e79cd
commit e077d149dc
4 changed files with 484 additions and 89 deletions

View File

@ -9,41 +9,51 @@
#include <iostream>
using namespace cl::sycl;
// Cache list of devices
bool cached = false;
std::vector<sycl::device> devices;
std::vector<device> devices;
void getDeviceList(void);
template <class T>
SYCLStream<T>::SYCLStream(const size_t ARRAY_SIZE, const int device_index)
: array_size {ARRAY_SIZE},
d_a {ARRAY_SIZE},
d_b {ARRAY_SIZE},
d_c {ARRAY_SIZE},
d_sum {1}
SYCLStream<T>::SYCLStream(const int ARRAY_SIZE, const int device_index)
{
if (!cached)
getDeviceList();
array_size = ARRAY_SIZE;
if (device_index >= devices.size())
throw std::runtime_error("Invalid device index");
sycl::device dev = devices[device_index];
// Print out device information
std::cout << "Using SYCL device " << getDeviceName(device_index) << std::endl;
std::cout << "Driver: " << getDeviceDriver(device_index) << std::endl;
device dev = devices[device_index];
// Check device can support FP64 if needed
if (sizeof(T) == sizeof(double))
{
if (!dev.has(sycl::aspect::fp64))
{
if (dev.get_info<info::device::double_fp_config>().size() == 0) {
throw std::runtime_error("Device does not support double precision, please use --float");
}
}
queue = std::make_unique<sycl::queue>(dev, sycl::async_handler{[&](sycl::exception_list l)
// Determine sensible dot kernel NDRange configuration
if (dev.is_cpu())
{
dot_num_groups = dev.get_info<info::device::max_compute_units>();
dot_wgsize = dev.get_info<info::device::native_vector_width_double>() * 2;
}
else
{
dot_num_groups = dev.get_info<info::device::max_compute_units>() * 4;
dot_wgsize = dev.get_info<info::device::max_work_group_size>();
}
// Print out device information
std::cout << "Using SYCL device " << getDeviceName(device_index) << std::endl;
std::cout << "Driver: " << getDeviceDriver(device_index) << std::endl;
std::cout << "Reduction kernel config: " << dot_num_groups << " groups of size " << dot_wgsize << std::endl;
queue = new cl::sycl::queue(dev, cl::sycl::async_handler{[&](cl::sycl::exception_list l)
{
bool error = false;
for(auto e: l)
@ -52,7 +62,7 @@ SYCLStream<T>::SYCLStream(const size_t ARRAY_SIZE, const int device_index)
{
std::rethrow_exception(e);
}
catch (sycl::exception e)
catch (cl::sycl::exception e)
{
std::cout << e.what();
error = true;
@ -64,22 +74,32 @@ SYCLStream<T>::SYCLStream(const size_t ARRAY_SIZE, const int device_index)
}
}});
// No longer need list of devices
devices.clear();
cached = true;
// Create buffers
d_a = new buffer<T>(array_size);
d_b = new buffer<T>(array_size);
d_c = new buffer<T>(array_size);
d_sum = new buffer<T>(dot_num_groups);
}
template <class T>
SYCLStream<T>::~SYCLStream()
{
delete d_a;
delete d_b;
delete d_c;
delete d_sum;
delete queue;
devices.clear();
}
template <class T>
void SYCLStream<T>::copy()
{
queue->submit([&](sycl::handler &cgh)
queue->submit([&](handler &cgh)
{
sycl::accessor ka {d_a, cgh, sycl::read_only};
sycl::accessor kc {d_c, cgh, sycl::write_only};
cgh.parallel_for(sycl::range<1>{array_size}, [=](sycl::id<1> idx)
auto ka = d_a->template get_access<access::mode::read>(cgh);
auto kc = d_c->template get_access<access::mode::write>(cgh);
cgh.parallel_for<copy_kernel>(range<1>{array_size}, [=](id<1> idx)
{
kc[idx] = ka[idx];
});
@ -91,11 +111,11 @@ template <class T>
void SYCLStream<T>::mul()
{
const T scalar = startScalar;
queue->submit([&](sycl::handler &cgh)
queue->submit([&](handler &cgh)
{
sycl::accessor kb {d_b, cgh, sycl::write_only};
sycl::accessor kc {d_c, cgh, sycl::read_only};
cgh.parallel_for(sycl::range<1>{array_size}, [=](sycl::id<1> idx)
auto kb = d_b->template get_access<access::mode::write>(cgh);
auto kc = d_c->template get_access<access::mode::read>(cgh);
cgh.parallel_for<mul_kernel>(range<1>{array_size}, [=](id<1> idx)
{
kb[idx] = scalar * kc[idx];
});
@ -106,12 +126,12 @@ void SYCLStream<T>::mul()
template <class T>
void SYCLStream<T>::add()
{
queue->submit([&](sycl::handler &cgh)
queue->submit([&](handler &cgh)
{
sycl::accessor ka {d_a, cgh, sycl::read_only};
sycl::accessor kb {d_b, cgh, sycl::read_only};
sycl::accessor kc {d_c, cgh, sycl::write_only};
cgh.parallel_for(sycl::range<1>{array_size}, [=](sycl::id<1> idx)
auto ka = d_a->template get_access<access::mode::read>(cgh);
auto kb = d_b->template get_access<access::mode::read>(cgh);
auto kc = d_c->template get_access<access::mode::write>(cgh);
cgh.parallel_for<add_kernel>(range<1>{array_size}, [=](id<1> idx)
{
kc[idx] = ka[idx] + kb[idx];
});
@ -123,12 +143,12 @@ template <class T>
void SYCLStream<T>::triad()
{
const T scalar = startScalar;
queue->submit([&](sycl::handler &cgh)
queue->submit([&](handler &cgh)
{
sycl::accessor ka {d_a, cgh, sycl::write_only};
sycl::accessor kb {d_b, cgh, sycl::read_only};
sycl::accessor kc {d_c, cgh, sycl::read_only};
cgh.parallel_for(sycl::range<1>{array_size}, [=](sycl::id<1> idx)
auto ka = d_a->template get_access<access::mode::write>(cgh);
auto kb = d_b->template get_access<access::mode::read>(cgh);
auto kc = d_c->template get_access<access::mode::read>(cgh);
cgh.parallel_for<triad_kernel>(range<1>{array_size}, [=](id<1> idx)
{
ka[idx] = kb[idx] + scalar * kc[idx];
});
@ -140,13 +160,12 @@ template <class T>
void SYCLStream<T>::nstream()
{
const T scalar = startScalar;
queue->submit([&](sycl::handler &cgh)
queue->submit([&](handler &cgh)
{
sycl::accessor ka {d_a, cgh};
sycl::accessor kb {d_b, cgh, sycl::read_only};
sycl::accessor kc {d_c, cgh, sycl::read_only};
cgh.parallel_for(sycl::range<1>{array_size}, [=](sycl::id<1> idx)
auto ka = d_a->template get_access<access::mode::read_write>(cgh);
auto kb = d_b->template get_access<access::mode::read>(cgh);
auto kc = d_c->template get_access<access::mode::read>(cgh);
cgh.parallel_for<nstream_kernel>(range<1>{array_size}, [=](id<1> idx)
{
ka[idx] += kb[idx] + scalar * kc[idx];
});
@ -157,55 +176,73 @@ void SYCLStream<T>::nstream()
template <class T>
T SYCLStream<T>::dot()
{
queue->submit([&](sycl::handler &cgh)
queue->submit([&](handler &cgh)
{
sycl::accessor ka {d_a, cgh, sycl::read_only};
sycl::accessor kb {d_b, cgh, sycl::read_only};
auto ka = d_a->template get_access<access::mode::read>(cgh);
auto kb = d_b->template get_access<access::mode::read>(cgh);
auto ksum = d_sum->template get_access<access::mode::write>(cgh);
cgh.parallel_for(sycl::range<1>{array_size},
// Reduction object, to perform summation - initialises the result to zero
sycl::reduction(d_sum, cgh, std::plus<T>(), sycl::property::reduction::initialize_to_identity),
[=](sycl::id<1> idx, auto& sum)
auto wg_sum = accessor<T, 1, access::mode::read_write, access::target::local>(range<1>(dot_wgsize), cgh);
size_t N = array_size;
cgh.parallel_for<dot_kernel>(nd_range<1>(dot_num_groups*dot_wgsize, dot_wgsize), [=](nd_item<1> item)
{
sum += ka[idx] * kb[idx];
size_t i = item.get_global_id(0);
size_t li = item.get_local_id(0);
size_t global_size = item.get_global_range()[0];
wg_sum[li] = 0.0;
for (; i < N; i += global_size)
wg_sum[li] += ka[i] * kb[i];
size_t local_size = item.get_local_range()[0];
for (int offset = local_size / 2; offset > 0; offset /= 2)
{
item.barrier(cl::sycl::access::fence_space::local_space);
if (li < offset)
wg_sum[li] += wg_sum[li + offset];
}
if (li == 0)
ksum[item.get_group(0)] = wg_sum[0];
});
});
});
// Get access on the host, and return a copy of the data (single number)
// This will block until the result is available, so no need to wait on the queue.
sycl::host_accessor result {d_sum, sycl::read_only};
return result[0];
T sum = 0.0;
auto h_sum = d_sum->template get_access<access::mode::read>();
for (int i = 0; i < dot_num_groups; i++)
{
sum += h_sum[i];
}
return sum;
}
template <class T>
void SYCLStream<T>::init_arrays(T initA, T initB, T initC)
{
queue->submit([&](sycl::handler &cgh)
queue->submit([&](handler &cgh)
{
sycl::accessor ka {d_a, cgh, sycl::write_only, sycl::no_init};
sycl::accessor kb {d_b, cgh, sycl::write_only, sycl::no_init};
sycl::accessor kc {d_c, cgh, sycl::write_only, sycl::no_init};
cgh.parallel_for(sycl::range<1>{array_size}, [=](sycl::id<1> idx)
auto ka = d_a->template get_access<access::mode::write>(cgh);
auto kb = d_b->template get_access<access::mode::write>(cgh);
auto kc = d_c->template get_access<access::mode::write>(cgh);
cgh.parallel_for<init_kernel>(range<1>{array_size}, [=](item<1> item)
{
ka[idx] = initA;
kb[idx] = initB;
kc[idx] = initC;
auto id = item.get_id(0);
ka[id] = initA;
kb[id] = initB;
kc[id] = initC;
});
});
queue->wait();
}
template <class T>
void SYCLStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
{
sycl::host_accessor _a {d_a, sycl::read_only};
sycl::host_accessor _b {d_b, sycl::read_only};
sycl::host_accessor _c {d_c, sycl::read_only};
auto _a = d_a->template get_access<access::mode::read>();
auto _b = d_b->template get_access<access::mode::read>();
auto _c = d_c->template get_access<access::mode::read>();
for (int i = 0; i < array_size; i++)
{
a[i] = _a[i];
@ -217,7 +254,7 @@ void SYCLStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vecto
void getDeviceList(void)
{
// Ask SYCL runtime for all devices in system
devices = sycl::device::get_devices();
devices = cl::sycl::device::get_devices();
cached = true;
}
@ -251,7 +288,7 @@ std::string getDeviceName(const int device)
if (device < devices.size())
{
name = devices[device].get_info<sycl::info::device::name>();
name = devices[device].get_info<info::device::name>();
}
else
{
@ -270,7 +307,7 @@ std::string getDeviceDriver(const int device)
if (device < devices.size())
{
driver = devices[device].get_info<sycl::info::device::driver_version>();
driver = devices[device].get_info<info::device::driver_version>();
}
else
{
@ -280,5 +317,6 @@ std::string getDeviceDriver(const int device)
return driver;
}
// TODO: Fix kernel names to allow multiple template specializations
template class SYCLStream<float>;
template class SYCLStream<double>;

View File

@ -8,13 +8,22 @@
#pragma once
#include <sstream>
#include <memory>
#include "Stream.h"
#include "CL/sycl.hpp"
#include <sycl/sycl.hpp>
#define IMPLEMENTATION_STRING "SYCL"
#define IMPLEMENTATION_STRING "SYCL 2020"
namespace sycl_kernels
{
template <class T> class init;
template <class T> class copy;
template <class T> class mul;
template <class T> class add;
template <class T> class triad;
template <class T> class nstream;
template <class T> class dot;
}
template <class T>
class SYCLStream : public Stream<T>
@ -24,19 +33,29 @@ class SYCLStream : public Stream<T>
size_t array_size;
// SYCL objects
// Queue is a pointer because we allow device selection
std::unique_ptr<sycl::queue> queue;
cl::sycl::queue *queue;
cl::sycl::buffer<T> *d_a;
cl::sycl::buffer<T> *d_b;
cl::sycl::buffer<T> *d_c;
cl::sycl::buffer<T> *d_sum;
// Buffers
sycl::buffer<T> d_a;
sycl::buffer<T> d_b;
sycl::buffer<T> d_c;
sycl::buffer<T> d_sum;
// SYCL kernel names
typedef sycl_kernels::init<T> init_kernel;
typedef sycl_kernels::copy<T> copy_kernel;
typedef sycl_kernels::mul<T> mul_kernel;
typedef sycl_kernels::add<T> add_kernel;
typedef sycl_kernels::triad<T> triad_kernel;
typedef sycl_kernels::nstream<T> nstream_kernel;
typedef sycl_kernels::dot<T> dot_kernel;
// NDRange configuration for the dot kernel
size_t dot_num_groups;
size_t dot_wgsize;
public:
SYCLStream(const size_t, const int);
~SYCLStream() = default;
SYCLStream(const int, const int);
~SYCLStream();
virtual void copy() override;
virtual void add() override;

284
src/sycl/SYCLStream2020.cpp Normal file
View File

@ -0,0 +1,284 @@
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
// University of Bristol HPC
//
// For full license terms please see the LICENSE file distributed with this
// source code
#include "SYCLStream.h"
#include <iostream>
// Cache list of devices
bool cached = false;
std::vector<sycl::device> devices;
void getDeviceList(void);
template <class T>
SYCLStream<T>::SYCLStream(const size_t ARRAY_SIZE, const int device_index)
: array_size {ARRAY_SIZE},
d_a {ARRAY_SIZE},
d_b {ARRAY_SIZE},
d_c {ARRAY_SIZE},
d_sum {1}
{
if (!cached)
getDeviceList();
if (device_index >= devices.size())
throw std::runtime_error("Invalid device index");
sycl::device dev = devices[device_index];
// Print out device information
std::cout << "Using SYCL device " << getDeviceName(device_index) << std::endl;
std::cout << "Driver: " << getDeviceDriver(device_index) << std::endl;
// Check device can support FP64 if needed
if (sizeof(T) == sizeof(double))
{
if (!dev.has(sycl::aspect::fp64))
{
throw std::runtime_error("Device does not support double precision, please use --float");
}
}
queue = std::make_unique<sycl::queue>(dev, sycl::async_handler{[&](sycl::exception_list l)
{
bool error = false;
for(auto e: l)
{
try
{
std::rethrow_exception(e);
}
catch (sycl::exception e)
{
std::cout << e.what();
error = true;
}
}
if(error)
{
throw std::runtime_error("SYCL errors detected");
}
}});
// No longer need list of devices
devices.clear();
cached = true;
}
template <class T>
void SYCLStream<T>::copy()
{
queue->submit([&](sycl::handler &cgh)
{
sycl::accessor ka {d_a, cgh, sycl::read_only};
sycl::accessor kc {d_c, cgh, sycl::write_only};
cgh.parallel_for(sycl::range<1>{array_size}, [=](sycl::id<1> idx)
{
kc[idx] = ka[idx];
});
});
queue->wait();
}
template <class T>
void SYCLStream<T>::mul()
{
const T scalar = startScalar;
queue->submit([&](sycl::handler &cgh)
{
sycl::accessor kb {d_b, cgh, sycl::write_only};
sycl::accessor kc {d_c, cgh, sycl::read_only};
cgh.parallel_for(sycl::range<1>{array_size}, [=](sycl::id<1> idx)
{
kb[idx] = scalar * kc[idx];
});
});
queue->wait();
}
template <class T>
void SYCLStream<T>::add()
{
queue->submit([&](sycl::handler &cgh)
{
sycl::accessor ka {d_a, cgh, sycl::read_only};
sycl::accessor kb {d_b, cgh, sycl::read_only};
sycl::accessor kc {d_c, cgh, sycl::write_only};
cgh.parallel_for(sycl::range<1>{array_size}, [=](sycl::id<1> idx)
{
kc[idx] = ka[idx] + kb[idx];
});
});
queue->wait();
}
template <class T>
void SYCLStream<T>::triad()
{
const T scalar = startScalar;
queue->submit([&](sycl::handler &cgh)
{
sycl::accessor ka {d_a, cgh, sycl::write_only};
sycl::accessor kb {d_b, cgh, sycl::read_only};
sycl::accessor kc {d_c, cgh, sycl::read_only};
cgh.parallel_for(sycl::range<1>{array_size}, [=](sycl::id<1> idx)
{
ka[idx] = kb[idx] + scalar * kc[idx];
});
});
queue->wait();
}
template <class T>
void SYCLStream<T>::nstream()
{
const T scalar = startScalar;
queue->submit([&](sycl::handler &cgh)
{
sycl::accessor ka {d_a, cgh};
sycl::accessor kb {d_b, cgh, sycl::read_only};
sycl::accessor kc {d_c, cgh, sycl::read_only};
cgh.parallel_for(sycl::range<1>{array_size}, [=](sycl::id<1> idx)
{
ka[idx] += kb[idx] + scalar * kc[idx];
});
});
queue->wait();
}
template <class T>
T SYCLStream<T>::dot()
{
queue->submit([&](sycl::handler &cgh)
{
sycl::accessor ka {d_a, cgh, sycl::read_only};
sycl::accessor kb {d_b, cgh, sycl::read_only};
cgh.parallel_for(sycl::range<1>{array_size},
// Reduction object, to perform summation - initialises the result to zero
sycl::reduction(d_sum, cgh, std::plus<T>(), sycl::property::reduction::initialize_to_identity),
[=](sycl::id<1> idx, auto& sum)
{
sum += ka[idx] * kb[idx];
});
});
// Get access on the host, and return a copy of the data (single number)
// This will block until the result is available, so no need to wait on the queue.
sycl::host_accessor result {d_sum, sycl::read_only};
return result[0];
}
template <class T>
void SYCLStream<T>::init_arrays(T initA, T initB, T initC)
{
queue->submit([&](sycl::handler &cgh)
{
sycl::accessor ka {d_a, cgh, sycl::write_only, sycl::no_init};
sycl::accessor kb {d_b, cgh, sycl::write_only, sycl::no_init};
sycl::accessor kc {d_c, cgh, sycl::write_only, sycl::no_init};
cgh.parallel_for(sycl::range<1>{array_size}, [=](sycl::id<1> idx)
{
ka[idx] = initA;
kb[idx] = initB;
kc[idx] = initC;
});
});
queue->wait();
}
template <class T>
void SYCLStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
{
sycl::host_accessor _a {d_a, sycl::read_only};
sycl::host_accessor _b {d_b, sycl::read_only};
sycl::host_accessor _c {d_c, sycl::read_only};
for (int i = 0; i < array_size; i++)
{
a[i] = _a[i];
b[i] = _b[i];
c[i] = _c[i];
}
}
void getDeviceList(void)
{
// Ask SYCL runtime for all devices in system
devices = sycl::device::get_devices();
cached = true;
}
void listDevices(void)
{
getDeviceList();
// Print device names
if (devices.size() == 0)
{
std::cerr << "No devices found." << std::endl;
}
else
{
std::cout << std::endl;
std::cout << "Devices:" << std::endl;
for (int i = 0; i < devices.size(); i++)
{
std::cout << i << ": " << getDeviceName(i) << std::endl;
}
std::cout << std::endl;
}
}
std::string getDeviceName(const int device)
{
if (!cached)
getDeviceList();
std::string name;
if (device < devices.size())
{
name = devices[device].get_info<sycl::info::device::name>();
}
else
{
throw std::runtime_error("Error asking for name for non-existant device");
}
return name;
}
std::string getDeviceDriver(const int device)
{
if (!cached)
getDeviceList();
std::string driver;
if (device < devices.size())
{
driver = devices[device].get_info<sycl::info::device::driver_version>();
}
else
{
throw std::runtime_error("Error asking for driver for non-existant device");
}
return driver;
}
template class SYCLStream<float>;
template class SYCLStream<double>;

54
src/sycl/SYCLStream2020.h Normal file
View File

@ -0,0 +1,54 @@
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
// University of Bristol HPC
//
// For full license terms please see the LICENSE file distributed with this
// source code
#pragma once
#include <sstream>
#include <memory>
#include "Stream.h"
#include <sycl/sycl.hpp>
#define IMPLEMENTATION_STRING "SYCL 2020"
template <class T>
class SYCLStream : public Stream<T>
{
protected:
// Size of arrays
size_t array_size;
// SYCL objects
// Queue is a pointer because we allow device selection
std::unique_ptr<sycl::queue> queue;
// Buffers
sycl::buffer<T> d_a;
sycl::buffer<T> d_b;
sycl::buffer<T> d_c;
sycl::buffer<T> d_sum;
public:
SYCLStream(const size_t, const int);
~SYCLStream() = default;
virtual void copy() override;
virtual void add() override;
virtual void mul() override;
virtual void triad() override;
virtual void nstream() override;
virtual T dot() override;
virtual void init_arrays(T initA, T initB, T initC) override;
virtual void read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c) override;
};
// Populate the devices list
void getDeviceList(void);