Merge branch 'refactor'
This commit is contained in:
commit
eda9d56ed9
16
.gitignore
vendored
16
.gitignore
vendored
@ -1,8 +1,20 @@
|
||||
|
||||
common.h
|
||||
|
||||
gpu-stream-cuda
|
||||
gpu-stream-ocl
|
||||
gpu-stream-acc
|
||||
gpu-stream-omp3
|
||||
gpu-stream-omp45
|
||||
gpu-stream-sycl
|
||||
|
||||
*.o
|
||||
|
||||
*.tar
|
||||
|
||||
*.gz
|
||||
|
||||
.DS_Store
|
||||
|
||||
CMakeCache.txt
|
||||
CMakeFiles/
|
||||
cmake_install.cmake
|
||||
Makefile
|
||||
|
||||
141
ACCStream.cpp
Normal file
141
ACCStream.cpp
Normal file
@ -0,0 +1,141 @@
|
||||
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#include "ACCStream.h"
|
||||
|
||||
template <class T>
|
||||
ACCStream<T>::ACCStream(const unsigned int ARRAY_SIZE, T *a, T *b, T *c, int device)
|
||||
{
|
||||
|
||||
acc_set_device_num(device, acc_device_nvidia);
|
||||
|
||||
array_size = ARRAY_SIZE;
|
||||
|
||||
// Set up data region on device
|
||||
this->a = a;
|
||||
this->b = b;
|
||||
this->c = c;
|
||||
#pragma acc enter data create(a[0:array_size], b[0:array_size], c[0:array_size])
|
||||
{}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
ACCStream<T>::~ACCStream()
|
||||
{
|
||||
// End data region on device
|
||||
unsigned int array_size = this->array_size;
|
||||
T *a = this->a;
|
||||
T *b = this->b;
|
||||
T *c = this->c;
|
||||
#pragma acc exit data delete(a[0:array_size], b[0:array_size], c[0:array_size])
|
||||
{}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void ACCStream<T>::write_arrays(const std::vector<T>& h_a, const std::vector<T>& h_b, const std::vector<T>& h_c)
|
||||
{
|
||||
T *a = this->a;
|
||||
T *b = this->b;
|
||||
T *c = this->c;
|
||||
#pragma acc update device(a[0:array_size], b[0:array_size], c[0:array_size])
|
||||
{}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void ACCStream<T>::read_arrays(std::vector<T>& h_a, std::vector<T>& h_b, std::vector<T>& h_c)
|
||||
{
|
||||
T *a = this->a;
|
||||
T *b = this->b;
|
||||
T *c = this->c;
|
||||
#pragma acc update host(a[0:array_size], b[0:array_size], c[0:array_size])
|
||||
{}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void ACCStream<T>::copy()
|
||||
{
|
||||
unsigned int array_size = this->array_size;
|
||||
T * restrict a = this->a;
|
||||
T * restrict c = this->c;
|
||||
#pragma acc kernels present(a[0:array_size], c[0:array_size]) wait
|
||||
for (int i = 0; i < array_size; i++)
|
||||
{
|
||||
c[i] = a[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void ACCStream<T>::mul()
|
||||
{
|
||||
const T scalar = 0.3;
|
||||
|
||||
unsigned int array_size = this->array_size;
|
||||
T * restrict b = this->b;
|
||||
T * restrict c = this->c;
|
||||
#pragma acc kernels present(b[0:array_size], c[0:array_size]) wait
|
||||
for (int i = 0; i < array_size; i++)
|
||||
{
|
||||
b[i] = scalar * c[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void ACCStream<T>::add()
|
||||
{
|
||||
unsigned int array_size = this->array_size;
|
||||
T * restrict a = this->a;
|
||||
T * restrict b = this->b;
|
||||
T * restrict c = this->c;
|
||||
#pragma acc kernels present(a[0:array_size], b[0:array_size], c[0:array_size]) wait
|
||||
for (int i = 0; i < array_size; i++)
|
||||
{
|
||||
c[i] = a[i] + b[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void ACCStream<T>::triad()
|
||||
{
|
||||
const T scalar = 0.3;
|
||||
|
||||
unsigned int array_size = this->array_size;
|
||||
T * restrict a = this->a;
|
||||
T * restrict b = this->b;
|
||||
T * restrict c = this->c;
|
||||
#pragma acc kernels present(a[0:array_size], b[0:array_size], c[0:array_size]) wait
|
||||
for (int i = 0; i < array_size; i++)
|
||||
{
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
}
|
||||
}
|
||||
void listDevices(void)
|
||||
{
|
||||
// Get number of devices
|
||||
int count = acc_get_num_devices(acc_device_nvidia);
|
||||
|
||||
// Print device list
|
||||
if (count == 0)
|
||||
{
|
||||
std::cerr << "No devices found." << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << "There are " << count << " devices." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
std::string getDeviceName(const int)
|
||||
{
|
||||
return std::string("Device name unavailable");
|
||||
}
|
||||
|
||||
std::string getDeviceDriver(const int)
|
||||
{
|
||||
return std::string("Device driver unavailable");
|
||||
}
|
||||
template class ACCStream<float>;
|
||||
template class ACCStream<double>;
|
||||
44
ACCStream.h
Normal file
44
ACCStream.h
Normal file
@ -0,0 +1,44 @@
|
||||
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
#include <stdexcept>
|
||||
|
||||
#include "Stream.h"
|
||||
|
||||
#include <openacc.h>
|
||||
|
||||
#define IMPLEMENTATION_STRING "OpenACC"
|
||||
|
||||
template <class T>
|
||||
class ACCStream : public Stream<T>
|
||||
{
|
||||
protected:
|
||||
// Size of arrays
|
||||
unsigned int array_size;
|
||||
// Device side pointers
|
||||
T *a;
|
||||
T *b;
|
||||
T *c;
|
||||
|
||||
public:
|
||||
ACCStream(const unsigned int, T*, T*, T*, int);
|
||||
~ACCStream();
|
||||
|
||||
virtual void copy() override;
|
||||
virtual void add() override;
|
||||
virtual void mul() override;
|
||||
virtual void triad() override;
|
||||
|
||||
virtual void write_arrays(const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c) override;
|
||||
virtual void read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c) override;
|
||||
|
||||
|
||||
|
||||
};
|
||||
177
CL/cl2.hpp
177
CL/cl2.hpp
@ -52,6 +52,18 @@
|
||||
* #define CL_HPP_USE_DX_INTEROP
|
||||
* cl_khr_sub_groups
|
||||
* #define CL_HPP_USE_CL_SUB_GROUPS_KHR
|
||||
*
|
||||
* Doxygen documentation for this header is available here:
|
||||
*
|
||||
* http://khronosgroup.github.io/OpenCL-CLHPP/
|
||||
*
|
||||
* The latest version of this header can be found on the GitHub releases page:
|
||||
*
|
||||
* https://github.com/KhronosGroup/OpenCL-CLHPP/releases
|
||||
*
|
||||
* Bugs and patches can be submitted to the GitHub repository:
|
||||
*
|
||||
* https://github.com/KhronosGroup/OpenCL-CLHPP
|
||||
*/
|
||||
|
||||
/*! \mainpage
|
||||
@ -134,41 +146,64 @@
|
||||
*
|
||||
* \section parameterization Parameters
|
||||
* This header may be parameterized by a set of preprocessor macros.
|
||||
* CL_HPP_TARGET_OPENCL_VERSION
|
||||
* - Defines the target OpenCL runtime version to build the header against.
|
||||
* Defaults to 200, representing OpenCL 2.0.
|
||||
* CL_HPP_NO_STD_STRING
|
||||
* - Do not use the standard library string class.
|
||||
* cl::string is not defined and may be defined by the user before
|
||||
* cl2.hpp is included.
|
||||
* CL_HPP_NO_STD_VECTOR
|
||||
* - Do not use the standard library vector class.
|
||||
* cl::vector is not defined and may be defined by the user before
|
||||
* cl2.hpp is included.
|
||||
* CL_HPP_NO_STD_ARRAY
|
||||
* - Do not use the standard library array class.
|
||||
* cl::array is not defined and may be defined by the user before
|
||||
* cl2.hpp is included.
|
||||
* CL_HPP_NO_STD_UNIQUE_PTR
|
||||
* - Do not use the standard library unique_ptr class.
|
||||
* cl::pointer and the cl::allocate_pointer function are not defined
|
||||
* and may be defined by the user before cl2.hpp is included.
|
||||
* CL_HPP_ENABLE_DEVICE_FISSION
|
||||
* - Enables device fission for OpenCL 1.2 platforms
|
||||
* CL_HPP_ENABLE_EXCEPTIONS
|
||||
* - Enable exceptions for use in the C++ bindings header.
|
||||
* This is the preferred error handling mechanism but is not required.
|
||||
* CL_HPP_ENABLE_SIZE_T_COMPATIBILITY
|
||||
* - Backward compatibility option to support cl.hpp-style size_t class.
|
||||
* Replaces the updated std::array derived version and removal of size_t
|
||||
* from the namespace. Note that in this case the new size_t class
|
||||
* is placed in the cl::compatibility namespace and thus requires
|
||||
* an additional using declaration for direct backward compatibility.
|
||||
* CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY
|
||||
* - Enable older vector of pairs interface for construction of programs.
|
||||
* CL_HPP_CL_1_2_DEFAULT_BUILD
|
||||
* - Default to OpenCL C 1.2 compilation rather than OpenCL C 2.0
|
||||
* - applies to use of cl::Program construction and other program build variants.
|
||||
*
|
||||
* - CL_HPP_TARGET_OPENCL_VERSION
|
||||
*
|
||||
* Defines the target OpenCL runtime version to build the header
|
||||
* against. Defaults to 200, representing OpenCL 2.0.
|
||||
*
|
||||
* - CL_HPP_NO_STD_STRING
|
||||
*
|
||||
* Do not use the standard library string class. cl::string is not
|
||||
* defined and may be defined by the user before cl2.hpp is
|
||||
* included.
|
||||
*
|
||||
* - CL_HPP_NO_STD_VECTOR
|
||||
*
|
||||
* Do not use the standard library vector class. cl::vector is not
|
||||
* defined and may be defined by the user before cl2.hpp is
|
||||
* included.
|
||||
*
|
||||
* - CL_HPP_NO_STD_ARRAY
|
||||
*
|
||||
* Do not use the standard library array class. cl::array is not
|
||||
* defined and may be defined by the user before cl2.hpp is
|
||||
* included.
|
||||
*
|
||||
* - CL_HPP_NO_STD_UNIQUE_PTR
|
||||
*
|
||||
* Do not use the standard library unique_ptr class. cl::pointer and
|
||||
* the cl::allocate_pointer functions are not defined and may be
|
||||
* defined by the user before cl2.hpp is included.
|
||||
*
|
||||
* - CL_HPP_ENABLE_DEVICE_FISSION
|
||||
*
|
||||
* Enables device fission for OpenCL 1.2 platforms.
|
||||
*
|
||||
* - CL_HPP_ENABLE_EXCEPTIONS
|
||||
*
|
||||
* Enable exceptions for use in the C++ bindings header. This is the
|
||||
* preferred error handling mechanism but is not required.
|
||||
*
|
||||
* - CL_HPP_ENABLE_SIZE_T_COMPATIBILITY
|
||||
*
|
||||
* Backward compatibility option to support cl.hpp-style size_t
|
||||
* class. Replaces the updated std::array derived version and
|
||||
* removal of size_t from the namespace. Note that in this case the
|
||||
* new size_t class is placed in the cl::compatibility namespace and
|
||||
* thus requires an additional using declaration for direct backward
|
||||
* compatibility.
|
||||
*
|
||||
* - CL_HPP_ENABLE_PROGRAM_CONSTRUCTION_FROM_ARRAY_COMPATIBILITY
|
||||
*
|
||||
* Enable older vector of pairs interface for construction of
|
||||
* programs.
|
||||
*
|
||||
* - CL_HPP_CL_1_2_DEFAULT_BUILD
|
||||
*
|
||||
* Default to OpenCL C 1.2 compilation rather than OpenCL C 2.0
|
||||
* applies to use of cl::Program construction and other program
|
||||
* build variants.
|
||||
*
|
||||
*
|
||||
* \section example Example
|
||||
@ -213,34 +248,44 @@
|
||||
return -1;
|
||||
}
|
||||
|
||||
std::string kernel1{
|
||||
"global int globalA;"
|
||||
"kernel void updateGlobal(){"
|
||||
" globalA = 75;"
|
||||
"}"};
|
||||
std::string kernel2{
|
||||
"typedef struct { global int *bar; } Foo; kernel void vectorAdd(global const Foo* aNum, global const int *inputA, global const int *inputB, global int *output, int val, write_only pipe int outPipe, queue_t childQueue){"
|
||||
" output[get_global_id(0)] = inputA[get_global_id(0)] + inputB[get_global_id(0)] + val + *(aNum->bar);"
|
||||
" write_pipe(outPipe, &val);"
|
||||
" queue_t default_queue = get_default_queue(); "
|
||||
" ndrange_t ndrange = ndrange_1D(get_global_size(0)/2, get_global_size(0)/2); "
|
||||
// Use C++11 raw string literals for kernel source code
|
||||
std::string kernel1{R"CLC(
|
||||
global int globalA;
|
||||
kernel void updateGlobal()
|
||||
{
|
||||
globalA = 75;
|
||||
}
|
||||
)CLC"};
|
||||
std::string kernel2{R"CLC(
|
||||
typedef struct { global int *bar; } Foo;
|
||||
kernel void vectorAdd(global const Foo* aNum, global const int *inputA, global const int *inputB,
|
||||
global int *output, int val, write_only pipe int outPipe, queue_t childQueue)
|
||||
{
|
||||
output[get_global_id(0)] = inputA[get_global_id(0)] + inputB[get_global_id(0)] + val + *(aNum->bar);
|
||||
write_pipe(outPipe, &val);
|
||||
queue_t default_queue = get_default_queue();
|
||||
ndrange_t ndrange = ndrange_1D(get_global_size(0)/2, get_global_size(0)/2);
|
||||
|
||||
// Have a child kernel write into third quarter of output
|
||||
" enqueue_kernel(default_queue, CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange, "
|
||||
" ^{"
|
||||
" output[get_global_size(0)*2 + get_global_id(0)] = inputA[get_global_size(0)*2+get_global_id(0)] + inputB[get_global_size(0)*2+get_global_id(0)] + globalA;"
|
||||
" });"
|
||||
enqueue_kernel(default_queue, CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange,
|
||||
^{
|
||||
output[get_global_size(0)*2 + get_global_id(0)] =
|
||||
inputA[get_global_size(0)*2 + get_global_id(0)] + inputB[get_global_size(0)*2 + get_global_id(0)] + globalA;
|
||||
});
|
||||
|
||||
// Have a child kernel write into last quarter of output
|
||||
" enqueue_kernel(childQueue, CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange, "
|
||||
" ^{"
|
||||
" output[get_global_size(0)*3 + get_global_id(0)] = inputA[get_global_size(0)*3 + get_global_id(0)] + inputB[get_global_size(0)*3 + get_global_id(0)] + globalA + 2;"
|
||||
" });"
|
||||
"}" };
|
||||
enqueue_kernel(childQueue, CLK_ENQUEUE_FLAGS_WAIT_KERNEL, ndrange,
|
||||
^{
|
||||
output[get_global_size(0)*3 + get_global_id(0)] =
|
||||
inputA[get_global_size(0)*3 + get_global_id(0)] + inputB[get_global_size(0)*3 + get_global_id(0)] + globalA + 2;
|
||||
});
|
||||
}
|
||||
)CLC"};
|
||||
|
||||
// New simpler string interface style
|
||||
std::vector<std::string> programStrings {kernel1, kernel2};
|
||||
|
||||
cl::Program vectorAddProgram(
|
||||
programStrings);
|
||||
cl::Program vectorAddProgram(programStrings);
|
||||
try {
|
||||
vectorAddProgram.build("-cl-std=CL2.0");
|
||||
}
|
||||
@ -268,9 +313,9 @@
|
||||
//////////////////
|
||||
// SVM allocations
|
||||
|
||||
cl::pointer<int> anSVMInt = cl::allocate_svm<int, cl::SVMTraitCoarse<>>();
|
||||
auto anSVMInt = cl::allocate_svm<int, cl::SVMTraitCoarse<>>();
|
||||
*anSVMInt = 5;
|
||||
cl::SVMAllocator<int, cl::SVMTraitCoarse<cl::SVMTraitReadOnly<>>> svmAllocReadOnly;
|
||||
cl::SVMAllocator<Foo, cl::SVMTraitCoarse<cl::SVMTraitReadOnly<>>> svmAllocReadOnly;
|
||||
auto fooPointer = cl::allocate_pointer<Foo>(svmAllocReadOnly);
|
||||
fooPointer->bar = anSVMInt.get();
|
||||
cl::SVMAllocator<int, cl::SVMTraitCoarse<>> svmAlloc;
|
||||
@ -3538,7 +3583,7 @@ template <class T, class Alloc, class... Args>
|
||||
cl::pointer<T, detail::Deleter<Alloc>> allocate_pointer(const Alloc &alloc_, Args&&... args)
|
||||
{
|
||||
Alloc alloc(alloc_);
|
||||
static const size_t copies = 1;
|
||||
static const size_type copies = 1;
|
||||
|
||||
// Ensure that creation of the management block and the
|
||||
// object are dealt with separately such that we only provide a deleter
|
||||
@ -6520,7 +6565,7 @@ inline cl_int cl::Program::getInfo(cl_program_info name, vector<vector<unsigned
|
||||
|
||||
// Resize the parameter array and constituent arrays
|
||||
param->resize(numBinaries);
|
||||
for (int i = 0; i < numBinaries; ++i) {
|
||||
for (size_type i = 0; i < numBinaries; ++i) {
|
||||
(*param)[i].resize(sizes[i]);
|
||||
}
|
||||
|
||||
@ -7107,7 +7152,7 @@ public:
|
||||
size_type buffer_slice_pitch,
|
||||
size_type host_row_pitch,
|
||||
size_type host_slice_pitch,
|
||||
void *ptr,
|
||||
const void *ptr,
|
||||
const vector<Event>* events = NULL,
|
||||
Event* event = NULL) const
|
||||
{
|
||||
@ -7255,7 +7300,7 @@ public:
|
||||
const array<size_type, 3>& region,
|
||||
size_type row_pitch,
|
||||
size_type slice_pitch,
|
||||
void* ptr,
|
||||
const void* ptr,
|
||||
const vector<Event>* events = NULL,
|
||||
Event* event = NULL) const
|
||||
{
|
||||
@ -7845,7 +7890,7 @@ public:
|
||||
CL_EXT_PREFIX__VERSION_1_2_DEPRECATED cl_int enqueueTask(
|
||||
const Kernel& kernel,
|
||||
const vector<Event>* events = NULL,
|
||||
Event* event = NULL) CL_EXT_SUFFIX__VERSION_1_2_DEPRECATED const
|
||||
Event* event = NULL) const CL_EXT_SUFFIX__VERSION_1_2_DEPRECATED
|
||||
{
|
||||
cl_event tmp;
|
||||
cl_int err = detail::errHandler(
|
||||
@ -8873,7 +8918,7 @@ inline cl_int enqueueWriteBufferRect(
|
||||
size_type buffer_slice_pitch,
|
||||
size_type host_row_pitch,
|
||||
size_type host_slice_pitch,
|
||||
void *ptr,
|
||||
const void *ptr,
|
||||
const vector<Event>* events = NULL,
|
||||
Event* event = NULL)
|
||||
{
|
||||
@ -8971,7 +9016,7 @@ inline cl_int enqueueWriteImage(
|
||||
const array<size_type, 3>& region,
|
||||
size_type row_pitch,
|
||||
size_type slice_pitch,
|
||||
void* ptr,
|
||||
const void* ptr,
|
||||
const vector<Event>* events = NULL,
|
||||
Event* event = NULL)
|
||||
{
|
||||
|
||||
164
CMakeLists.txt
Normal file
164
CMakeLists.txt
Normal file
@ -0,0 +1,164 @@
|
||||
|
||||
cmake_minimum_required(VERSION 3.2)
|
||||
|
||||
set(CMAKE_CXX_STANDARD 11)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
|
||||
project(gpu-stream)
|
||||
|
||||
include(CheckIncludeFileCXX)
|
||||
include(CheckCXXCompilerFlag)
|
||||
|
||||
set(gpu-stream_VERSION_MAJOR 2)
|
||||
set(gpu-stream_VERSION_MINOR 0)
|
||||
|
||||
configure_file(common.h.in common.h)
|
||||
|
||||
# If using the Cray compiler, manually add the C++11 flag because setting the
|
||||
# standard through CMake as above doesn't set this flag with Cray
|
||||
if ("${CMAKE_CXX_COMPILER_ID}" MATCHES "Cray")
|
||||
list(APPEND CMAKE_CXX_FLAGS -hstd=c++11)
|
||||
endif ()
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# CUDA
|
||||
#-------------------------------------------------------------------------------
|
||||
find_package(CUDA 7.0 QUIET)
|
||||
set(FLAG True)
|
||||
if ("${CMAKE_SYSTEM_NAME}" MATCHES "Darwin")
|
||||
execute_process(COMMAND xcodebuild -version COMMAND head -n 1 OUTPUT_VARIABLE XCODE_VERSION)
|
||||
if ("${XCODE_VERSION}" MATCHES "Xcode 7.3.1")
|
||||
message("Xcode version not supported by CUDA")
|
||||
set(FLAG False)
|
||||
endif ()
|
||||
endif ()
|
||||
if (${FLAG} AND ${CUDA_FOUND})
|
||||
list(APPEND CUDA_NVCC_FLAGS --std=c++11)
|
||||
cuda_add_executable(gpu-stream-cuda main.cpp CUDAStream.cu)
|
||||
target_compile_definitions(gpu-stream-cuda PUBLIC CUDA)
|
||||
else ()
|
||||
message("Skipping CUDA...")
|
||||
endif ()
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# OpenCL
|
||||
#-------------------------------------------------------------------------------
|
||||
find_package(OpenCL QUIET)
|
||||
if (${OpenCL_FOUND})
|
||||
add_executable(gpu-stream-ocl main.cpp OCLStream.cpp)
|
||||
target_compile_definitions(gpu-stream-ocl PUBLIC OCL)
|
||||
target_link_libraries(gpu-stream-ocl ${OpenCL_LIBRARY})
|
||||
else ()
|
||||
message("Skipping OpenCL...")
|
||||
endif ()
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# OpenACC
|
||||
#-------------------------------------------------------------------------------
|
||||
# Check compiler supports an OpenACC flag
|
||||
include(CheckCXXCompilerFlag)
|
||||
if ("${CMAKE_CXX_COMPILER_ID}" MATCHES "GNU")
|
||||
CHECK_CXX_COMPILER_FLAG(-fopenacc OPENACC)
|
||||
if (OPENACC)
|
||||
list (APPEND CMAKE_EXE_LINKER_FLAGS -fopenacc)
|
||||
endif ()
|
||||
elseif ("${CMAKE_CXX_COMPILER_ID}" MATCHES "PGI")
|
||||
CHECK_CXX_COMPILER_FLAG(-acc OPENACC)
|
||||
elseif ("${CMAKE_CXX_COMPILER_ID}" MATCHES "Cray")
|
||||
CHECK_CXX_COMPILER_FLAG(-hacc=openacc OPENACC)
|
||||
endif ()
|
||||
|
||||
if (OPENACC)
|
||||
add_executable(gpu-stream-acc main.cpp ACCStream.cpp)
|
||||
target_compile_definitions(gpu-stream-acc PUBLIC ACC)
|
||||
else ()
|
||||
message("Skipping OpenACC...")
|
||||
endif ()
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# OpenMP 3.0
|
||||
#-------------------------------------------------------------------------------
|
||||
find_package(OpenMP QUIET)
|
||||
if (${OpenMP_FOUND})
|
||||
add_executable(gpu-stream-omp3 main.cpp OMP3Stream.cpp)
|
||||
target_compile_definitions(gpu-stream-omp3 PUBLIC OMP3)
|
||||
else ()
|
||||
message("Skipping OpenMP 3...")
|
||||
endif ()
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# OpenMP 4.5
|
||||
#-------------------------------------------------------------------------------
|
||||
if ("${CMAKE_CXX_COMPILER_ID}" MATCHES "Cray")
|
||||
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 4.5)
|
||||
add_executable(gpu-stream-omp45 main.cpp OMP45Stream.cpp)
|
||||
target_compile_definitions(gpu-stream-omp45 PUBLIC OMP45)
|
||||
endif ()
|
||||
endif ()
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# RAJA
|
||||
#-------------------------------------------------------------------------------
|
||||
|
||||
if (RAJA_PATH)
|
||||
find_package(OpenMP)
|
||||
find_package(CUDA 7.5)
|
||||
list(APPEND CUDA_NVCC_FLAGS "-arch compute_35")
|
||||
list(APPEND CUDA_NVCC_FLAGS --expt-extended-lambda)
|
||||
list(APPEND CUDA_NVCC_FLAGS -Xcompiler ${OpenMP_CXX_FLAGS})
|
||||
list(APPEND CUDA_NVCC_FLAGS -DUSE_RAJA)
|
||||
cuda_include_directories(${RAJA_PATH}/include)
|
||||
set_source_files_properties(RAJAStream.cpp PROPERTIES CUDA_SOURCE_PROPERTY_FORMAT OBJ)
|
||||
cuda_add_executable(gpu-stream-raja main.cpp RAJAStream.cpp)
|
||||
target_compile_definitions(gpu-stream-raja PUBLIC USE_RAJA)
|
||||
target_link_libraries(gpu-stream-raja "-L${RAJA_PATH}/lib -lRAJA")
|
||||
else()
|
||||
message("Skipping RAJA... (use -DRAJA_PATH=/path/to/raja to opt in)")
|
||||
endif()
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# Kokkos
|
||||
#-------------------------------------------------------------------------------
|
||||
if (KOKKOS_PATH)
|
||||
if ("${CMAKE_SYSTEM_NAME}" MATCHES "Linux")
|
||||
add_custom_target(gpu-stream-kokkos COMMAND make -f KokkosMakefile KOKKOS_PATH=${KOKKOS_PATH})
|
||||
else()
|
||||
message("Skipping Kokkos (requires Linux)")
|
||||
endif()
|
||||
else()
|
||||
message("Skipping Kokkos... (use -DKOKKOS_PATH=/path/to/kokkos to opt in)")
|
||||
endif()
|
||||
|
||||
#-------------------------------------------------------------------------------
|
||||
# SYCL
|
||||
#-------------------------------------------------------------------------------
|
||||
if ("${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang" OR
|
||||
"${CMAKE_CXX_COMPILER_ID}" MATCHES "GNU")
|
||||
# Use C++14 if available, otherwise drop back to C++11
|
||||
check_cxx_compiler_flag("-std=c++14" CXX14)
|
||||
if (CXX14)
|
||||
set(CMAKE_REQUIRED_FLAGS "-std=c++14")
|
||||
else()
|
||||
set(CMAKE_REQUIRED_FLAGS "-std=c++11")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
check_include_file_cxx("CL/sycl.hpp" HAS_SYCL)
|
||||
if (HAS_SYCL)
|
||||
add_executable(gpu-stream-sycl main.cpp SYCLStream.cpp)
|
||||
target_compile_definitions(gpu-stream-sycl PUBLIC SYCL)
|
||||
|
||||
find_program(COMPUTECPP "compute++")
|
||||
if (COMPUTECPP)
|
||||
message(STATUS "Using ComputeCpp for SYCL compilation")
|
||||
add_custom_target(SYCLStream.sycl COMMAND ${COMPUTECPP} ${CMAKE_CURRENT_SOURCE_DIR}/SYCLStream.cpp -sycl -no-serial-memop -O2 -emit-llvm -c)
|
||||
add_dependencies(gpu-stream-sycl SYCLStream.sycl)
|
||||
target_compile_options(gpu-stream-sycl PUBLIC -include SYCLStream.sycl)
|
||||
target_link_libraries(gpu-stream-sycl SYCL OpenCL)
|
||||
else()
|
||||
message(STATUS "Using header-only SYCL implementation")
|
||||
set_property(TARGET gpu-stream-sycl PROPERTY CXX_STANDARD 14)
|
||||
endif(COMPUTECPP)
|
||||
else ()
|
||||
message("Skipping SYCL...")
|
||||
endif (HAS_SYCL)
|
||||
214
CUDAStream.cu
Normal file
214
CUDAStream.cu
Normal file
@ -0,0 +1,214 @@
|
||||
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
|
||||
#include "CUDAStream.h"
|
||||
|
||||
#define TBSIZE 1024
|
||||
|
||||
void check_error(void)
|
||||
{
|
||||
cudaError_t err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
std::cerr << "Error: " << cudaGetErrorString(err) << std::endl;
|
||||
exit(err);
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
CUDAStream<T>::CUDAStream(const unsigned int ARRAY_SIZE, const int device_index)
|
||||
{
|
||||
|
||||
// The array size must be divisible by TBSIZE for kernel launches
|
||||
if (ARRAY_SIZE % TBSIZE != 0)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << "Array size must be a multiple of " << TBSIZE;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
// Set device
|
||||
int count;
|
||||
cudaGetDeviceCount(&count);
|
||||
check_error();
|
||||
if (device_index >= count)
|
||||
throw std::runtime_error("Invalid device index");
|
||||
cudaSetDevice(device_index);
|
||||
check_error();
|
||||
|
||||
// Print out device information
|
||||
std::cout << "Using OpenCL device " << getDeviceName(device_index) << std::endl;
|
||||
std::cout << "Driver: " << getDeviceDriver(device_index) << std::endl;
|
||||
|
||||
array_size = ARRAY_SIZE;
|
||||
|
||||
// Check buffers fit on the device
|
||||
cudaDeviceProp props;
|
||||
cudaGetDeviceProperties(&props, 0);
|
||||
if (props.totalGlobalMem < 3*ARRAY_SIZE*sizeof(T))
|
||||
throw std::runtime_error("Device does not have enough memory for all 3 buffers");
|
||||
|
||||
// Create device buffers
|
||||
cudaMalloc(&d_a, ARRAY_SIZE*sizeof(T));
|
||||
check_error();
|
||||
cudaMalloc(&d_b, ARRAY_SIZE*sizeof(T));
|
||||
check_error();
|
||||
cudaMalloc(&d_c, ARRAY_SIZE*sizeof(T));
|
||||
check_error();
|
||||
}
|
||||
|
||||
|
||||
template <class T>
|
||||
CUDAStream<T>::~CUDAStream()
|
||||
{
|
||||
cudaFree(d_a);
|
||||
check_error();
|
||||
cudaFree(d_b);
|
||||
check_error();
|
||||
cudaFree(d_c);
|
||||
check_error();
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void CUDAStream<T>::write_arrays(const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c)
|
||||
{
|
||||
// Copy host memory to device
|
||||
cudaMemcpy(d_a, a.data(), a.size()*sizeof(T), cudaMemcpyHostToDevice);
|
||||
check_error();
|
||||
cudaMemcpy(d_b, b.data(), b.size()*sizeof(T), cudaMemcpyHostToDevice);
|
||||
check_error();
|
||||
cudaMemcpy(d_c, c.data(), c.size()*sizeof(T), cudaMemcpyHostToDevice);
|
||||
check_error();
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void CUDAStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
|
||||
{
|
||||
// Copy device memory to host
|
||||
cudaMemcpy(a.data(), d_a, a.size()*sizeof(T), cudaMemcpyDeviceToHost);
|
||||
check_error();
|
||||
cudaMemcpy(b.data(), d_b, b.size()*sizeof(T), cudaMemcpyDeviceToHost);
|
||||
check_error();
|
||||
cudaMemcpy(c.data(), d_c, c.size()*sizeof(T), cudaMemcpyDeviceToHost);
|
||||
check_error();
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void copy_kernel(const T * a, T * c)
|
||||
{
|
||||
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
c[i] = a[i];
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void CUDAStream<T>::copy()
|
||||
{
|
||||
copy_kernel<<<array_size/TBSIZE, TBSIZE>>>(d_a, d_c);
|
||||
check_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_error();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void mul_kernel(T * b, const T * c)
|
||||
{
|
||||
const T scalar = 0.3;
|
||||
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
b[i] = scalar * c[i];
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void CUDAStream<T>::mul()
|
||||
{
|
||||
mul_kernel<<<array_size/TBSIZE, TBSIZE>>>(d_b, d_c);
|
||||
check_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_error();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void add_kernel(const T * a, const T * b, T * c)
|
||||
{
|
||||
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
c[i] = a[i] + b[i];
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void CUDAStream<T>::add()
|
||||
{
|
||||
add_kernel<<<array_size/TBSIZE, TBSIZE>>>(d_a, d_b, d_c);
|
||||
check_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_error();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void triad_kernel(T * a, const T * b, const T * c)
|
||||
{
|
||||
const T scalar = 0.3;
|
||||
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void CUDAStream<T>::triad()
|
||||
{
|
||||
triad_kernel<<<array_size/TBSIZE, TBSIZE>>>(d_a, d_b, d_c);
|
||||
check_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_error();
|
||||
}
|
||||
|
||||
|
||||
void listDevices(void)
|
||||
{
|
||||
// Get number of devices
|
||||
int count;
|
||||
cudaGetDeviceCount(&count);
|
||||
check_error();
|
||||
|
||||
// Print device names
|
||||
if (count == 0)
|
||||
{
|
||||
std::cerr << "No devices found." << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << std::endl;
|
||||
std::cout << "Devices:" << std::endl;
|
||||
for (int i = 0; i < count; i++)
|
||||
{
|
||||
std::cout << i << ": " << getDeviceName(i) << std::endl;
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
std::string getDeviceName(const int device)
|
||||
{
|
||||
cudaDeviceProp props;
|
||||
cudaGetDeviceProperties(&props, device);
|
||||
check_error();
|
||||
return std::string(props.name);
|
||||
}
|
||||
|
||||
|
||||
std::string getDeviceDriver(const int device)
|
||||
{
|
||||
cudaSetDevice(device);
|
||||
check_error();
|
||||
int driver;
|
||||
cudaDriverGetVersion(&driver);
|
||||
check_error();
|
||||
return std::to_string(driver);
|
||||
}
|
||||
|
||||
template class CUDAStream<float>;
|
||||
template class CUDAStream<double>;
|
||||
43
CUDAStream.h
Normal file
43
CUDAStream.h
Normal file
@ -0,0 +1,43 @@
|
||||
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
#include <stdexcept>
|
||||
#include <sstream>
|
||||
|
||||
#include "Stream.h"
|
||||
|
||||
#define IMPLEMENTATION_STRING "CUDA"
|
||||
|
||||
template <class T>
|
||||
class CUDAStream : public Stream<T>
|
||||
{
|
||||
protected:
|
||||
// Size of arrays
|
||||
unsigned int array_size;
|
||||
// Device side pointers to arrays
|
||||
T *d_a;
|
||||
T *d_b;
|
||||
T *d_c;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
CUDAStream(const unsigned int, const int);
|
||||
~CUDAStream();
|
||||
|
||||
virtual void copy() override;
|
||||
virtual void add() override;
|
||||
virtual void mul() override;
|
||||
virtual void triad() override;
|
||||
|
||||
virtual void write_arrays(const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c) override;
|
||||
virtual void read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c) override;
|
||||
|
||||
};
|
||||
142
KOKKOSStream.cpp
Normal file
142
KOKKOSStream.cpp
Normal file
@ -0,0 +1,142 @@
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
|
||||
#include "KOKKOSStream.hpp"
|
||||
|
||||
using namespace Kokkos;
|
||||
|
||||
template <class T>
|
||||
KOKKOSStream<T>::KOKKOSStream(
|
||||
const unsigned int ARRAY_SIZE, const int device_index)
|
||||
: array_size(ARRAY_SIZE)
|
||||
{
|
||||
Kokkos::initialize();
|
||||
|
||||
d_a = new View<double*, DEVICE>("d_a", ARRAY_SIZE);
|
||||
d_b = new View<double*, DEVICE>("d_b", ARRAY_SIZE);
|
||||
d_c = new View<double*, DEVICE>("d_c", ARRAY_SIZE);
|
||||
hm_a = new View<double*, DEVICE>::HostMirror();
|
||||
hm_b = new View<double*, DEVICE>::HostMirror();
|
||||
hm_c = new View<double*, DEVICE>::HostMirror();
|
||||
*hm_a = create_mirror_view(*d_a);
|
||||
*hm_b = create_mirror_view(*d_b);
|
||||
*hm_c = create_mirror_view(*d_c);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
KOKKOSStream<T>::~KOKKOSStream()
|
||||
{
|
||||
finalize();
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void KOKKOSStream<T>::write_arrays(
|
||||
const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c)
|
||||
{
|
||||
for(int ii = 0; ii < array_size; ++ii)
|
||||
{
|
||||
(*hm_a)(ii) = a[ii];
|
||||
(*hm_b)(ii) = b[ii];
|
||||
(*hm_c)(ii) = c[ii];
|
||||
}
|
||||
deep_copy(*d_a, *hm_a);
|
||||
deep_copy(*d_b, *hm_b);
|
||||
deep_copy(*d_c, *hm_c);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void KOKKOSStream<T>::read_arrays(
|
||||
std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
|
||||
{
|
||||
deep_copy(*hm_a, *d_a);
|
||||
deep_copy(*hm_b, *d_b);
|
||||
deep_copy(*hm_c, *d_c);
|
||||
for(int ii = 0; ii < array_size; ++ii)
|
||||
{
|
||||
a[ii] = (*hm_a)(ii);
|
||||
b[ii] = (*hm_b)(ii);
|
||||
c[ii] = (*hm_c)(ii);
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void KOKKOSStream<T>::copy()
|
||||
{
|
||||
View<double*, DEVICE> a(*d_a);
|
||||
View<double*, DEVICE> b(*d_b);
|
||||
View<double*, DEVICE> c(*d_c);
|
||||
|
||||
parallel_for(array_size, KOKKOS_LAMBDA (const int index)
|
||||
{
|
||||
c[index] = a[index];
|
||||
});
|
||||
Kokkos::fence();
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void KOKKOSStream<T>::mul()
|
||||
{
|
||||
View<double*, DEVICE> a(*d_a);
|
||||
View<double*, DEVICE> b(*d_b);
|
||||
View<double*, DEVICE> c(*d_c);
|
||||
|
||||
const T scalar = 0.3;
|
||||
parallel_for(array_size, KOKKOS_LAMBDA (const int index)
|
||||
{
|
||||
b[index] = scalar*c[index];
|
||||
});
|
||||
Kokkos::fence();
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void KOKKOSStream<T>::add()
|
||||
{
|
||||
View<double*, DEVICE> a(*d_a);
|
||||
View<double*, DEVICE> b(*d_b);
|
||||
View<double*, DEVICE> c(*d_c);
|
||||
|
||||
parallel_for(array_size, KOKKOS_LAMBDA (const int index)
|
||||
{
|
||||
c[index] = a[index] + b[index];
|
||||
});
|
||||
Kokkos::fence();
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void KOKKOSStream<T>::triad()
|
||||
{
|
||||
View<double*, DEVICE> a(*d_a);
|
||||
View<double*, DEVICE> b(*d_b);
|
||||
View<double*, DEVICE> c(*d_c);
|
||||
|
||||
const T scalar = 0.3;
|
||||
parallel_for(array_size, KOKKOS_LAMBDA (const int index)
|
||||
{
|
||||
a[index] = b[index] + scalar*c[index];
|
||||
});
|
||||
Kokkos::fence();
|
||||
}
|
||||
|
||||
void listDevices(void)
|
||||
{
|
||||
std::cout << "This is not the device you are looking for.";
|
||||
}
|
||||
|
||||
|
||||
std::string getDeviceName(const int device)
|
||||
{
|
||||
return "Kokkos";
|
||||
}
|
||||
|
||||
|
||||
std::string getDeviceDriver(const int device)
|
||||
{
|
||||
return "Kokkos";
|
||||
}
|
||||
|
||||
//template class KOKKOSStream<float>;
|
||||
template class KOKKOSStream<double>;
|
||||
56
KOKKOSStream.hpp
Normal file
56
KOKKOSStream.hpp
Normal file
@ -0,0 +1,56 @@
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
#include <stdexcept>
|
||||
|
||||
#include <Kokkos_Core.hpp>
|
||||
#include <Kokkos_Parallel.hpp>
|
||||
#include <Kokkos_View.hpp>
|
||||
|
||||
#include "Stream.h"
|
||||
|
||||
#define IMPLEMENTATION_STRING "KOKKOS"
|
||||
|
||||
#ifdef KOKKOS_TARGET_CPU
|
||||
#define DEVICE Kokkos::OpenMP
|
||||
#else
|
||||
#define DEVICE Kokkos::Cuda
|
||||
#endif
|
||||
|
||||
template <class T>
|
||||
class KOKKOSStream : public Stream<T>
|
||||
{
|
||||
protected:
|
||||
// Size of arrays
|
||||
unsigned int array_size;
|
||||
|
||||
// Device side pointers to arrays
|
||||
Kokkos::View<double*, DEVICE>* d_a;
|
||||
Kokkos::View<double*, DEVICE>* d_b;
|
||||
Kokkos::View<double*, DEVICE>* d_c;
|
||||
Kokkos::View<double*>::HostMirror* hm_a;
|
||||
Kokkos::View<double*>::HostMirror* hm_b;
|
||||
Kokkos::View<double*>::HostMirror* hm_c;
|
||||
|
||||
public:
|
||||
|
||||
KOKKOSStream(const unsigned int, const int);
|
||||
~KOKKOSStream();
|
||||
|
||||
virtual void copy() override;
|
||||
virtual void add() override;
|
||||
virtual void mul() override;
|
||||
virtual void triad() override;
|
||||
|
||||
virtual void write_arrays(
|
||||
const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c) override;
|
||||
virtual void read_arrays(
|
||||
std::vector<T>& a, std::vector<T>& b, std::vector<T>& c) override;
|
||||
};
|
||||
|
||||
11
KokkosMakefile
Normal file
11
KokkosMakefile
Normal file
@ -0,0 +1,11 @@
|
||||
|
||||
default: gpu-stream-kokkos
|
||||
|
||||
include $(KOKKOS_PATH)/Makefile.kokkos
|
||||
|
||||
gpu-stream-kokkos: main.o KOKKOSStream.o
|
||||
$(CXX) $(KOKKOS_LDFLAGS) $^ $(KOKKOS_LIBS) -o $@ -DKOKKOS
|
||||
|
||||
%.o:%.cpp $(KOKKOS_CPP_DEPENDS)
|
||||
$(NVCC_WRAPPER) $(KOKKOS_CPPFLAGS) $(KOKKOS_CXXFLAGS) -c $< -DKOKKOS
|
||||
|
||||
2
LICENSE
2
LICENSE
@ -1,6 +1,6 @@
|
||||
*==============================================================================
|
||||
*------------------------------------------------------------------------------
|
||||
* Copyright 2015: Tom Deakin, Simon McIntosh-Smith, University of Bristol HPC
|
||||
* Copyright 2015-16: Tom Deakin, Simon McIntosh-Smith, University of Bristol HPC
|
||||
* Based on John D. McCalpin’s original STREAM benchmark for CPUs
|
||||
*------------------------------------------------------------------------------
|
||||
* License:
|
||||
|
||||
41
Makefile
41
Makefile
@ -1,41 +0,0 @@
|
||||
LDLIBS = -l OpenCL
|
||||
CXXFLAGS = -std=c++11 -O3
|
||||
|
||||
PLATFORM = $(shell uname -s)
|
||||
ifeq ($(PLATFORM), Darwin)
|
||||
LDLIBS = -framework OpenCL
|
||||
endif
|
||||
|
||||
all: gpu-stream-ocl gpu-stream-cuda gpu-stream-hip
|
||||
|
||||
|
||||
gpu-stream-ocl: ocl-stream.cpp common.o Makefile
|
||||
$(CXX) $(CXXFLAGS) -Wno-deprecated-declarations common.o $< -o $@ $(LDLIBS)
|
||||
|
||||
common.o: common.cpp common.h Makefile
|
||||
|
||||
gpu-stream-cuda: cuda-stream.cu common.o Makefile
|
||||
ifeq ($(shell which nvcc > /dev/null; echo $$?), 0)
|
||||
nvcc $(CXXFLAGS) common.o $< -o $@
|
||||
else
|
||||
$(error "Cannot find nvcc, please install CUDA toolkit")
|
||||
endif
|
||||
HIP_PATH?=../../..
|
||||
HIPCC=$(HIP_PATH)/bin/hipcc
|
||||
|
||||
hip-stream.o : hip-stream.cpp
|
||||
$(HIPCC) $(CXXFLAGS) -c $< -o $@
|
||||
|
||||
gpu-stream-hip: hip-stream.o common.o Makefile
|
||||
ifeq ($(shell which $(HIPCC) > /dev/null; echo $$?), 0)
|
||||
$(HIPCC) $(CXXFLAGS) common.o $< -lm -o $@
|
||||
else
|
||||
$(error "Cannot find $(HIPCC), please install HIP toolkit")
|
||||
endif
|
||||
|
||||
|
||||
.PHONY: clean
|
||||
|
||||
clean:
|
||||
rm -f gpu-stream-ocl gpu-stream-cuda gpu-stream-hip *.o
|
||||
|
||||
255
OCLStream.cpp
Normal file
255
OCLStream.cpp
Normal file
@ -0,0 +1,255 @@
|
||||
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#include "OCLStream.h"
|
||||
|
||||
// Cache list of devices
|
||||
bool cached = false;
|
||||
std::vector<cl::Device> devices;
|
||||
void getDeviceList(void);
|
||||
|
||||
std::string kernels{R"CLC(
|
||||
|
||||
constant TYPE scalar = 0.3;
|
||||
|
||||
kernel void copy(
|
||||
global const TYPE * restrict a,
|
||||
global TYPE * restrict c)
|
||||
{
|
||||
const size_t i = get_global_id(0);
|
||||
c[i] = a[i];
|
||||
}
|
||||
|
||||
kernel void mul(
|
||||
global TYPE * restrict b,
|
||||
global const TYPE * restrict c)
|
||||
{
|
||||
const size_t i = get_global_id(0);
|
||||
b[i] = scalar * c[i];
|
||||
}
|
||||
|
||||
kernel void add(
|
||||
global const TYPE * restrict a,
|
||||
global const TYPE * restrict b,
|
||||
global TYPE * restrict c)
|
||||
{
|
||||
const size_t i = get_global_id(0);
|
||||
c[i] = a[i] + b[i];
|
||||
}
|
||||
|
||||
kernel void triad(
|
||||
global TYPE * restrict a,
|
||||
global const TYPE * restrict b,
|
||||
global const TYPE * restrict c)
|
||||
{
|
||||
const size_t i = get_global_id(0);
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
}
|
||||
|
||||
)CLC"};
|
||||
|
||||
|
||||
template <class T>
|
||||
OCLStream<T>::OCLStream(const unsigned int ARRAY_SIZE, const int device_index)
|
||||
{
|
||||
if (!cached)
|
||||
getDeviceList();
|
||||
|
||||
// Setup default OpenCL GPU
|
||||
if (device_index >= devices.size())
|
||||
throw std::runtime_error("Invalid device index");
|
||||
device = devices[device_index];
|
||||
|
||||
// Print out device information
|
||||
std::cout << "Using OpenCL device " << getDeviceName(device_index) << std::endl;
|
||||
std::cout << "Driver: " << getDeviceDriver(device_index) << std::endl;
|
||||
|
||||
context = cl::Context(device);
|
||||
queue = cl::CommandQueue(context);
|
||||
|
||||
// Create program
|
||||
cl::Program program(context, kernels);
|
||||
if (sizeof(T) == sizeof(double))
|
||||
{
|
||||
// Check device can do double
|
||||
if (!device.getInfo<CL_DEVICE_DOUBLE_FP_CONFIG>())
|
||||
throw std::runtime_error("Device does not support double precision, please use --float");
|
||||
program.build("-DTYPE=double");
|
||||
}
|
||||
else if (sizeof(T) == sizeof(float))
|
||||
program.build("-DTYPE=float");
|
||||
|
||||
// Create kernels
|
||||
copy_kernel = new cl::KernelFunctor<cl::Buffer, cl::Buffer>(program, "copy");
|
||||
mul_kernel = new cl::KernelFunctor<cl::Buffer, cl::Buffer>(program, "mul");
|
||||
add_kernel = new cl::KernelFunctor<cl::Buffer, cl::Buffer, cl::Buffer>(program, "add");
|
||||
triad_kernel = new cl::KernelFunctor<cl::Buffer, cl::Buffer, cl::Buffer>(program, "triad");
|
||||
|
||||
array_size = ARRAY_SIZE;
|
||||
|
||||
// Check buffers fit on the device
|
||||
cl_ulong totalmem = device.getInfo<CL_DEVICE_GLOBAL_MEM_SIZE>();
|
||||
cl_ulong maxbuffer = device.getInfo<CL_DEVICE_MAX_MEM_ALLOC_SIZE>();
|
||||
if (maxbuffer < sizeof(T)*ARRAY_SIZE)
|
||||
throw std::runtime_error("Device cannot allocate a buffer big enough");
|
||||
if (totalmem < 3*sizeof(T)*ARRAY_SIZE)
|
||||
throw std::runtime_error("Device does not have enough memory for all 3 buffers");
|
||||
|
||||
// Create buffers
|
||||
d_a = cl::Buffer(context, CL_MEM_READ_WRITE, sizeof(T) * ARRAY_SIZE);
|
||||
d_b = cl::Buffer(context, CL_MEM_READ_WRITE, sizeof(T) * ARRAY_SIZE);
|
||||
d_c = cl::Buffer(context, CL_MEM_READ_WRITE, sizeof(T) * ARRAY_SIZE);
|
||||
|
||||
}
|
||||
|
||||
template <class T>
|
||||
OCLStream<T>::~OCLStream()
|
||||
{
|
||||
delete copy_kernel;
|
||||
delete mul_kernel;
|
||||
delete add_kernel;
|
||||
delete triad_kernel;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OCLStream<T>::copy()
|
||||
{
|
||||
(*copy_kernel)(
|
||||
cl::EnqueueArgs(queue, cl::NDRange(array_size)),
|
||||
d_a, d_c
|
||||
);
|
||||
queue.finish();
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OCLStream<T>::mul()
|
||||
{
|
||||
(*mul_kernel)(
|
||||
cl::EnqueueArgs(queue, cl::NDRange(array_size)),
|
||||
d_b, d_c
|
||||
);
|
||||
queue.finish();
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OCLStream<T>::add()
|
||||
{
|
||||
(*add_kernel)(
|
||||
cl::EnqueueArgs(queue, cl::NDRange(array_size)),
|
||||
d_a, d_b, d_c
|
||||
);
|
||||
queue.finish();
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OCLStream<T>::triad()
|
||||
{
|
||||
(*triad_kernel)(
|
||||
cl::EnqueueArgs(queue, cl::NDRange(array_size)),
|
||||
d_a, d_b, d_c
|
||||
);
|
||||
queue.finish();
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OCLStream<T>::write_arrays(const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c)
|
||||
{
|
||||
cl::copy(queue, a.begin(), a.end(), d_a);
|
||||
cl::copy(queue, b.begin(), b.end(), d_b);
|
||||
cl::copy(queue, c.begin(), c.end(), d_c);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OCLStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
|
||||
{
|
||||
cl::copy(queue, d_a, a.begin(), a.end());
|
||||
cl::copy(queue, d_b, b.begin(), b.end());
|
||||
cl::copy(queue, d_c, c.begin(), c.end());
|
||||
}
|
||||
|
||||
void getDeviceList(void)
|
||||
{
|
||||
// Get list of platforms
|
||||
std::vector<cl::Platform> platforms;
|
||||
cl::Platform::get(&platforms);
|
||||
|
||||
// Enumerate devices
|
||||
for (unsigned i = 0; i < platforms.size(); i++)
|
||||
{
|
||||
std::vector<cl::Device> plat_devices;
|
||||
platforms[i].getDevices(CL_DEVICE_TYPE_ALL, &plat_devices);
|
||||
devices.insert(devices.end(), plat_devices.begin(), plat_devices.end());
|
||||
}
|
||||
cached = true;
|
||||
}
|
||||
|
||||
void listDevices(void)
|
||||
{
|
||||
getDeviceList();
|
||||
|
||||
// Print device names
|
||||
if (devices.size() == 0)
|
||||
{
|
||||
std::cerr << "No devices found." << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << std::endl;
|
||||
std::cout << "Devices:" << std::endl;
|
||||
for (int i = 0; i < devices.size(); i++)
|
||||
{
|
||||
std::cout << i << ": " << getDeviceName(i) << std::endl;
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
std::string getDeviceName(const int device)
|
||||
{
|
||||
if (!cached)
|
||||
getDeviceList();
|
||||
|
||||
std::string name;
|
||||
cl_device_info info = CL_DEVICE_NAME;
|
||||
|
||||
if (device < devices.size())
|
||||
{
|
||||
devices[device].getInfo(info, &name);
|
||||
}
|
||||
else
|
||||
{
|
||||
throw std::runtime_error("Error asking for name for non-existant device");
|
||||
}
|
||||
|
||||
return name;
|
||||
|
||||
}
|
||||
|
||||
std::string getDeviceDriver(const int device)
|
||||
{
|
||||
if (!cached)
|
||||
getDeviceList();
|
||||
|
||||
std::string driver;
|
||||
|
||||
if (device < devices.size())
|
||||
{
|
||||
devices[device].getInfo(CL_DRIVER_VERSION, &driver);
|
||||
}
|
||||
else
|
||||
{
|
||||
throw std::runtime_error("Error asking for driver for non-existant device");
|
||||
}
|
||||
|
||||
return driver;
|
||||
}
|
||||
|
||||
|
||||
template class OCLStream<float>;
|
||||
template class OCLStream<double>;
|
||||
61
OCLStream.h
Normal file
61
OCLStream.h
Normal file
@ -0,0 +1,61 @@
|
||||
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
#include <stdexcept>
|
||||
|
||||
#define CL_HPP_ENABLE_EXCEPTIONS
|
||||
#define CL_HPP_TARGET_OPENCL_VERSION 120
|
||||
#define CL_HPP_MINIMUM_OPENCL_VERSION 120
|
||||
|
||||
#include "CL/cl2.hpp"
|
||||
|
||||
#include "Stream.h"
|
||||
|
||||
#define IMPLEMENTATION_STRING "OpenCL"
|
||||
|
||||
template <class T>
|
||||
class OCLStream : public Stream<T>
|
||||
{
|
||||
protected:
|
||||
// Size of arrays
|
||||
unsigned int array_size;
|
||||
|
||||
// Device side pointers to arrays
|
||||
cl::Buffer d_a;
|
||||
cl::Buffer d_b;
|
||||
cl::Buffer d_c;
|
||||
|
||||
// OpenCL objects
|
||||
cl::Device device;
|
||||
cl::Context context;
|
||||
cl::CommandQueue queue;
|
||||
|
||||
cl::KernelFunctor<cl::Buffer, cl::Buffer> *copy_kernel;
|
||||
cl::KernelFunctor<cl::Buffer, cl::Buffer> * mul_kernel;
|
||||
cl::KernelFunctor<cl::Buffer, cl::Buffer, cl::Buffer> *add_kernel;
|
||||
cl::KernelFunctor<cl::Buffer, cl::Buffer, cl::Buffer> *triad_kernel;
|
||||
|
||||
public:
|
||||
|
||||
OCLStream(const unsigned int, const int);
|
||||
~OCLStream();
|
||||
|
||||
virtual void copy() override;
|
||||
virtual void add() override;
|
||||
virtual void mul() override;
|
||||
virtual void triad() override;
|
||||
|
||||
virtual void write_arrays(const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c) override;
|
||||
virtual void read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c) override;
|
||||
|
||||
};
|
||||
|
||||
// Populate the devices list
|
||||
void getDeviceList(void);
|
||||
111
OMP3Stream.cpp
Normal file
111
OMP3Stream.cpp
Normal file
@ -0,0 +1,111 @@
|
||||
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#include "OMP3Stream.h"
|
||||
|
||||
template <class T>
|
||||
OMP3Stream<T>::OMP3Stream(const unsigned int ARRAY_SIZE, T *a, T *b, T *c)
|
||||
{
|
||||
array_size = ARRAY_SIZE;
|
||||
this->a = (T*)malloc(sizeof(T)*array_size);
|
||||
this->b = (T*)malloc(sizeof(T)*array_size);
|
||||
this->c = (T*)malloc(sizeof(T)*array_size);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
OMP3Stream<T>::~OMP3Stream()
|
||||
{
|
||||
free(a);
|
||||
free(b);
|
||||
free(c);
|
||||
}
|
||||
|
||||
|
||||
template <class T>
|
||||
void OMP3Stream<T>::write_arrays(const std::vector<T>& h_a, const std::vector<T>& h_b, const std::vector<T>& h_c)
|
||||
{
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < array_size; i++)
|
||||
{
|
||||
a[i] = h_a[i];
|
||||
b[i] = h_b[i];
|
||||
c[i] = h_c[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OMP3Stream<T>::read_arrays(std::vector<T>& h_a, std::vector<T>& h_b, std::vector<T>& h_c)
|
||||
{
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < array_size; i++)
|
||||
{
|
||||
h_a[i] = a[i];
|
||||
h_b[i] = b[i];
|
||||
h_c[i] = c[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OMP3Stream<T>::copy()
|
||||
{
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < array_size; i++)
|
||||
{
|
||||
c[i] = a[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OMP3Stream<T>::mul()
|
||||
{
|
||||
const T scalar = 0.3;
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < array_size; i++)
|
||||
{
|
||||
b[i] = scalar * c[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OMP3Stream<T>::add()
|
||||
{
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < array_size; i++)
|
||||
{
|
||||
c[i] = a[i] + b[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OMP3Stream<T>::triad()
|
||||
{
|
||||
const T scalar = 0.3;
|
||||
#pragma omp parallel for
|
||||
for (int i = 0; i < array_size; i++)
|
||||
{
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
}
|
||||
}
|
||||
|
||||
void listDevices(void)
|
||||
{
|
||||
std::cout << "0: CPU" << std::endl;
|
||||
}
|
||||
|
||||
std::string getDeviceName(const int)
|
||||
{
|
||||
return std::string("Device name unavailable");
|
||||
}
|
||||
|
||||
std::string getDeviceDriver(const int)
|
||||
{
|
||||
return std::string("Device driver unavailable");
|
||||
}
|
||||
|
||||
|
||||
template class OMP3Stream<float>;
|
||||
template class OMP3Stream<double>;
|
||||
40
OMP3Stream.h
Normal file
40
OMP3Stream.h
Normal file
@ -0,0 +1,40 @@
|
||||
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
#include <stdexcept>
|
||||
|
||||
#include "Stream.h"
|
||||
|
||||
#define IMPLEMENTATION_STRING "Reference OpenMP"
|
||||
|
||||
template <class T>
|
||||
class OMP3Stream : public Stream<T>
|
||||
{
|
||||
protected:
|
||||
// Size of arrays
|
||||
unsigned int array_size;
|
||||
// Device side pointers
|
||||
T *a;
|
||||
T *b;
|
||||
T *c;
|
||||
|
||||
public:
|
||||
OMP3Stream(const unsigned int, T*, T*, T*);
|
||||
~OMP3Stream();
|
||||
|
||||
virtual void copy() override;
|
||||
virtual void add() override;
|
||||
virtual void mul() override;
|
||||
virtual void triad() override;
|
||||
|
||||
virtual void write_arrays(const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c) override;
|
||||
virtual void read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c) override;
|
||||
|
||||
};
|
||||
140
OMP45Stream.cpp
Normal file
140
OMP45Stream.cpp
Normal file
@ -0,0 +1,140 @@
|
||||
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#include "OMP45Stream.h"
|
||||
|
||||
template <class T>
|
||||
OMP45Stream<T>::OMP45Stream(const unsigned int ARRAY_SIZE, T *a, T *b, T *c, int device)
|
||||
{
|
||||
omp_set_default_device(device);
|
||||
|
||||
array_size = ARRAY_SIZE;
|
||||
|
||||
// Set up data region on device
|
||||
this->a = a;
|
||||
this->b = b;
|
||||
this->c = c;
|
||||
#pragma omp target enter data map(to: a[0:array_size], b[0:array_size], c[0:array_size])
|
||||
{}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
OMP45Stream<T>::~OMP45Stream()
|
||||
{
|
||||
// End data region on device
|
||||
unsigned int array_size = this->array_size;
|
||||
T *a = this->a;
|
||||
T *b = this->b;
|
||||
T *c = this->c;
|
||||
#pragma omp target exit data map(release: a[0:array_size], b[0:array_size], c[0:array_size])
|
||||
{}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OMP45Stream<T>::write_arrays(const std::vector<T>& h_a, const std::vector<T>& h_b, const std::vector<T>& h_c)
|
||||
{
|
||||
T *a = this->a;
|
||||
T *b = this->b;
|
||||
T *c = this->c;
|
||||
#pragma omp target update to(a[0:array_size], b[0:array_size], c[0:array_size])
|
||||
{}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OMP45Stream<T>::read_arrays(std::vector<T>& h_a, std::vector<T>& h_b, std::vector<T>& h_c)
|
||||
{
|
||||
T *a = this->a;
|
||||
T *b = this->b;
|
||||
T *c = this->c;
|
||||
#pragma omp target update from(a[0:array_size], b[0:array_size], c[0:array_size])
|
||||
{}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OMP45Stream<T>::copy()
|
||||
{
|
||||
unsigned int array_size = this->array_size;
|
||||
T *a = this->a;
|
||||
T *c = this->c;
|
||||
#pragma omp target teams distribute parallel for simd map(to: a[0:array_size], c[0:array_size])
|
||||
for (int i = 0; i < array_size; i++)
|
||||
{
|
||||
c[i] = a[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OMP45Stream<T>::mul()
|
||||
{
|
||||
const T scalar = 0.3;
|
||||
|
||||
unsigned int array_size = this->array_size;
|
||||
T *b = this->b;
|
||||
T *c = this->c;
|
||||
#pragma omp target teams distribute parallel for simd map(to: b[0:array_size], c[0:array_size])
|
||||
for (int i = 0; i < array_size; i++)
|
||||
{
|
||||
b[i] = scalar * c[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OMP45Stream<T>::add()
|
||||
{
|
||||
unsigned int array_size = this->array_size;
|
||||
T *a = this->a;
|
||||
T *b = this->b;
|
||||
T *c = this->c;
|
||||
#pragma omp target teams distribute parallel for simd map(to: a[0:array_size], b[0:array_size], c[0:array_size])
|
||||
for (int i = 0; i < array_size; i++)
|
||||
{
|
||||
c[i] = a[i] + b[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void OMP45Stream<T>::triad()
|
||||
{
|
||||
const T scalar = 0.3;
|
||||
|
||||
unsigned int array_size = this->array_size;
|
||||
T *a = this->a;
|
||||
T *b = this->b;
|
||||
T *c = this->c;
|
||||
#pragma omp target teams distribute parallel for simd map(to: a[0:array_size], b[0:array_size], c[0:array_size])
|
||||
for (int i = 0; i < array_size; i++)
|
||||
{
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
}
|
||||
}
|
||||
void listDevices(void)
|
||||
{
|
||||
// Get number of devices
|
||||
int count = omp_get_num_devices();
|
||||
|
||||
// Print device list
|
||||
if (count == 0)
|
||||
{
|
||||
std::cerr << "No devices found." << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << "There are " << count << " devices." << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
std::string getDeviceName(const int)
|
||||
{
|
||||
return std::string("Device name unavailable");
|
||||
}
|
||||
|
||||
std::string getDeviceDriver(const int)
|
||||
{
|
||||
return std::string("Device driver unavailable");
|
||||
}
|
||||
template class OMP45Stream<float>;
|
||||
template class OMP45Stream<double>;
|
||||
45
OMP45Stream.h
Normal file
45
OMP45Stream.h
Normal file
@ -0,0 +1,45 @@
|
||||
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
#include <stdexcept>
|
||||
|
||||
#include "Stream.h"
|
||||
|
||||
#include <omp.h>
|
||||
|
||||
#define IMPLEMENTATION_STRING "OpenMP 4.5"
|
||||
|
||||
template <class T>
|
||||
class OMP45Stream : public Stream<T>
|
||||
{
|
||||
protected:
|
||||
// Size of arrays
|
||||
unsigned int array_size;
|
||||
|
||||
// Device side pointers
|
||||
T *a;
|
||||
T *b;
|
||||
T *c;
|
||||
|
||||
public:
|
||||
OMP45Stream(const unsigned int, T*, T*, T*, int);
|
||||
~OMP45Stream();
|
||||
|
||||
virtual void copy() override;
|
||||
virtual void add() override;
|
||||
virtual void mul() override;
|
||||
virtual void triad() override;
|
||||
|
||||
virtual void write_arrays(const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c) override;
|
||||
virtual void read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c) override;
|
||||
|
||||
|
||||
|
||||
};
|
||||
130
RAJAStream.cpp
Normal file
130
RAJAStream.cpp
Normal file
@ -0,0 +1,130 @@
|
||||
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#include "RAJAStream.hpp"
|
||||
|
||||
using RAJA::forall;
|
||||
using RAJA::RangeSegment;
|
||||
|
||||
template <class T>
|
||||
RAJAStream<T>::RAJAStream(const unsigned int ARRAY_SIZE, const int device_index)
|
||||
: array_size(ARRAY_SIZE)
|
||||
{
|
||||
RangeSegment seg(0, ARRAY_SIZE);
|
||||
index_set.push_back(seg);
|
||||
|
||||
#ifdef RAJA_TARGET_CPU
|
||||
d_a = new T[ARRAY_SIZE];
|
||||
d_b = new T[ARRAY_SIZE];
|
||||
d_c = new T[ARRAY_SIZE];
|
||||
#else
|
||||
cudaMallocManaged((void**)&d_a, sizeof(T)*ARRAY_SIZE, cudaMemAttachGlobal);
|
||||
cudaMallocManaged((void**)&d_b, sizeof(T)*ARRAY_SIZE, cudaMemAttachGlobal);
|
||||
cudaMallocManaged((void**)&d_c, sizeof(T)*ARRAY_SIZE, cudaMemAttachGlobal);
|
||||
cudaDeviceSynchronize();
|
||||
#endif
|
||||
}
|
||||
|
||||
template <class T>
|
||||
RAJAStream<T>::~RAJAStream()
|
||||
{
|
||||
#ifdef RAJA_TARGET_CPU
|
||||
delete[] d_a;
|
||||
delete[] d_b;
|
||||
delete[] d_c;
|
||||
#else
|
||||
cudaFree(d_a);
|
||||
cudaFree(d_b);
|
||||
cudaFree(d_c);
|
||||
#endif
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void RAJAStream<T>::write_arrays(
|
||||
const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c)
|
||||
{
|
||||
std::copy(a.begin(), a.end(), d_a);
|
||||
std::copy(b.begin(), b.end(), d_b);
|
||||
std::copy(c.begin(), c.end(), d_c);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void RAJAStream<T>::read_arrays(
|
||||
std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
|
||||
{
|
||||
std::copy(d_a, d_a + array_size, a.data());
|
||||
std::copy(d_b, d_b + array_size, b.data());
|
||||
std::copy(d_c, d_c + array_size, c.data());
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void RAJAStream<T>::copy()
|
||||
{
|
||||
T* a = d_a;
|
||||
T* c = d_c;
|
||||
forall<policy>(index_set, [=] RAJA_DEVICE (int index)
|
||||
{
|
||||
c[index] = a[index];
|
||||
});
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void RAJAStream<T>::mul()
|
||||
{
|
||||
T* b = d_b;
|
||||
T* c = d_c;
|
||||
const T scalar = 0.3;
|
||||
forall<policy>(index_set, [=] RAJA_DEVICE (int index)
|
||||
{
|
||||
b[index] = scalar*c[index];
|
||||
});
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void RAJAStream<T>::add()
|
||||
{
|
||||
T* a = d_a;
|
||||
T* b = d_b;
|
||||
T* c = d_c;
|
||||
forall<policy>(index_set, [=] RAJA_DEVICE (int index)
|
||||
{
|
||||
c[index] = a[index] + b[index];
|
||||
});
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void RAJAStream<T>::triad()
|
||||
{
|
||||
T* a = d_a;
|
||||
T* b = d_b;
|
||||
T* c = d_c;
|
||||
const T scalar = 0.3;
|
||||
forall<policy>(index_set, [=] RAJA_DEVICE (int index)
|
||||
{
|
||||
a[index] = b[index] + scalar*c[index];
|
||||
});
|
||||
}
|
||||
|
||||
void listDevices(void)
|
||||
{
|
||||
std::cout << "This is not the device you are looking for.";
|
||||
}
|
||||
|
||||
|
||||
std::string getDeviceName(const int device)
|
||||
{
|
||||
return "RAJA";
|
||||
}
|
||||
|
||||
|
||||
std::string getDeviceDriver(const int device)
|
||||
{
|
||||
return "RAJA";
|
||||
}
|
||||
|
||||
template class RAJAStream<float>;
|
||||
template class RAJAStream<double>;
|
||||
58
RAJAStream.hpp
Normal file
58
RAJAStream.hpp
Normal file
@ -0,0 +1,58 @@
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <iostream>
|
||||
#include <stdexcept>
|
||||
#include "RAJA/RAJA.hxx"
|
||||
|
||||
#include "Stream.h"
|
||||
|
||||
#define IMPLEMENTATION_STRING "RAJA"
|
||||
|
||||
#ifdef RAJA_TARGET_CPU
|
||||
typedef RAJA::IndexSet::ExecPolicy<
|
||||
RAJA::seq_segit,
|
||||
RAJA::omp_parallel_for_exec> policy;
|
||||
#else
|
||||
const size_t block_size = 128;
|
||||
typedef RAJA::IndexSet::ExecPolicy<
|
||||
RAJA::seq_segit,
|
||||
RAJA::cuda_exec<block_size>> policy;
|
||||
#endif
|
||||
|
||||
template <class T>
|
||||
class RAJAStream : public Stream<T>
|
||||
{
|
||||
protected:
|
||||
// Size of arrays
|
||||
unsigned int array_size;
|
||||
|
||||
// Contains iteration space
|
||||
RAJA::IndexSet index_set;
|
||||
|
||||
// Device side pointers to arrays
|
||||
T* d_a;
|
||||
T* d_b;
|
||||
T* d_c;
|
||||
|
||||
public:
|
||||
|
||||
RAJAStream(const unsigned int, const int);
|
||||
~RAJAStream();
|
||||
|
||||
virtual void copy() override;
|
||||
virtual void add() override;
|
||||
virtual void mul() override;
|
||||
virtual void triad() override;
|
||||
|
||||
virtual void write_arrays(
|
||||
const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c) override;
|
||||
virtual void read_arrays(
|
||||
std::vector<T>& a, std::vector<T>& b, std::vector<T>& c) override;
|
||||
};
|
||||
|
||||
29
README.md
29
README.md
@ -6,24 +6,26 @@ This benchmark is similar in spirit, and based on, the STREAM benchmark [1] for
|
||||
|
||||
Unlike other GPU memory bandwidth benchmarks this does *not* include the PCIe transfer time.
|
||||
|
||||
There are multiple implementations of this benchmark in a variety of programming models.
|
||||
Currently implemented are:
|
||||
- OpenCL
|
||||
- CUDA
|
||||
- OpenACC
|
||||
- OpenMP 3 and 4.5
|
||||
- Kokkos
|
||||
- RAJA
|
||||
- SYCL
|
||||
|
||||
Usage
|
||||
-----
|
||||
|
||||
Build the OpenCL and CUDA binaries with `make` (CUDA version requires CUDA >= v6.5)
|
||||
CMake 3.2 or above is required.
|
||||
Drivers, compiler and software applicable to whichever implementation you would like to build against. Our build system is designed to only build implementations in programming models that your system supports.
|
||||
|
||||
Run the OpenCL version with `./gpu-stream-ocl` and the CUDA version with `./gpu-stream-cuda`
|
||||
Generate the Makefile with `cmake .`
|
||||
|
||||
For HIP version, follow the instructions on the following blog to properly install ROCK and ROCR drivers:
|
||||
http://gpuopen.com/getting-started-with-boltzmann-components-platforms-installation/
|
||||
Install the HCC compiler:
|
||||
https://bitbucket.org/multicoreware/hcc/wiki/Home
|
||||
Install HIP:
|
||||
https://github.com/GPUOpen-ProfessionalCompute-Tools/HIP
|
||||
|
||||
Build the HIP binaries with make gpu-stream-hip, run it with './gpu-stream-hip'
|
||||
|
||||
Android
|
||||
-------
|
||||
Android (outdated instructions)
|
||||
------------------
|
||||
|
||||
Assuming you have a recent Android NDK available, you can use the
|
||||
toolchain that it provides to build GPU-STREAM. You should first
|
||||
@ -57,6 +59,7 @@ Run GPU-STREAM from an adb shell:
|
||||
# Use float if device doesn't support double, and reduce array size
|
||||
./gpu-stream-ocl --float -n 6 -s 10000000
|
||||
|
||||
|
||||
Results
|
||||
-------
|
||||
|
||||
|
||||
231
SYCLStream.cpp
Normal file
231
SYCLStream.cpp
Normal file
@ -0,0 +1,231 @@
|
||||
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#include "SYCLStream.h"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
using namespace cl::sycl;
|
||||
|
||||
#define WGSIZE 64
|
||||
|
||||
// Cache list of devices
|
||||
bool cached = false;
|
||||
std::vector<device> devices;
|
||||
void getDeviceList(void);
|
||||
|
||||
template <class T>
|
||||
SYCLStream<T>::SYCLStream(const unsigned int ARRAY_SIZE, const int device_index)
|
||||
{
|
||||
if (!cached)
|
||||
getDeviceList();
|
||||
|
||||
// The array size must be divisible by WGSIZE
|
||||
if (ARRAY_SIZE % WGSIZE != 0)
|
||||
{
|
||||
std::stringstream ss;
|
||||
ss << "Array size must be a multiple of " << WGSIZE;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
array_size = ARRAY_SIZE;
|
||||
|
||||
if (device_index >= devices.size())
|
||||
throw std::runtime_error("Invalid device index");
|
||||
device dev = devices[device_index];
|
||||
|
||||
// Print out device information
|
||||
std::cout << "Using SYCL device " << getDeviceName(device_index) << std::endl;
|
||||
std::cout << "Driver: " << getDeviceDriver(device_index) << std::endl;
|
||||
|
||||
queue = new cl::sycl::queue(dev);
|
||||
|
||||
// Create buffers
|
||||
d_a = new buffer<T>(array_size);
|
||||
d_b = new buffer<T>(array_size);
|
||||
d_c = new buffer<T>(array_size);
|
||||
}
|
||||
|
||||
template <class T>
|
||||
SYCLStream<T>::~SYCLStream()
|
||||
{
|
||||
delete d_a;
|
||||
delete d_b;
|
||||
delete d_c;
|
||||
|
||||
delete queue;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void SYCLStream<T>::copy()
|
||||
{
|
||||
queue->submit([&](handler &cgh)
|
||||
{
|
||||
auto ka = d_a->template get_access<access::mode::read>(cgh);
|
||||
auto kc = d_c->template get_access<access::mode::write>(cgh);
|
||||
cgh.parallel_for<class copy>(nd_range<1>{array_size, WGSIZE}, [=](nd_item<1> item)
|
||||
{
|
||||
kc[item.get_global()] = ka[item.get_global()];
|
||||
});
|
||||
});
|
||||
queue->wait();
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void SYCLStream<T>::mul()
|
||||
{
|
||||
const T scalar = 0.3;
|
||||
queue->submit([&](handler &cgh)
|
||||
{
|
||||
auto kb = d_b->template get_access<access::mode::write>(cgh);
|
||||
auto kc = d_c->template get_access<access::mode::read>(cgh);
|
||||
cgh.parallel_for<class mul>(nd_range<1>{array_size, WGSIZE}, [=](nd_item<1> item)
|
||||
{
|
||||
kb[item.get_global()] = scalar * kc[item.get_global()];
|
||||
});
|
||||
});
|
||||
queue->wait();
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void SYCLStream<T>::add()
|
||||
{
|
||||
queue->submit([&](handler &cgh)
|
||||
{
|
||||
auto ka = d_a->template get_access<access::mode::read>(cgh);
|
||||
auto kb = d_b->template get_access<access::mode::read>(cgh);
|
||||
auto kc = d_c->template get_access<access::mode::write>(cgh);
|
||||
cgh.parallel_for<class add>(nd_range<1>{array_size, WGSIZE}, [=](nd_item<1> item)
|
||||
{
|
||||
kc[item.get_global()] = ka[item.get_global()] + kb[item.get_global()];
|
||||
});
|
||||
});
|
||||
queue->wait();
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void SYCLStream<T>::triad()
|
||||
{
|
||||
const T scalar = 0.3;
|
||||
queue->submit([&](handler &cgh)
|
||||
{
|
||||
auto ka = d_a->template get_access<access::mode::write>(cgh);
|
||||
auto kb = d_b->template get_access<access::mode::read>(cgh);
|
||||
auto kc = d_c->template get_access<access::mode::read>(cgh);
|
||||
cgh.parallel_for<class triad>(nd_range<1>{array_size, WGSIZE}, [=](nd_item<1> item)
|
||||
{
|
||||
ka[item.get_global()] = kb[item.get_global()] + scalar * kc[item.get_global()];
|
||||
});
|
||||
});
|
||||
queue->wait();
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void SYCLStream<T>::write_arrays(const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c)
|
||||
{
|
||||
auto _a = d_a->template get_access<access::mode::write, access::target::host_buffer>();
|
||||
auto _b = d_b->template get_access<access::mode::write, access::target::host_buffer>();
|
||||
auto _c = d_c->template get_access<access::mode::write, access::target::host_buffer>();
|
||||
for (int i = 0; i < array_size; i++)
|
||||
{
|
||||
_a[i] = a[i];
|
||||
_b[i] = b[i];
|
||||
_c[i] = c[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void SYCLStream<T>::read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
|
||||
{
|
||||
auto _a = d_a->template get_access<access::mode::read, access::target::host_buffer>();
|
||||
auto _b = d_b->template get_access<access::mode::read, access::target::host_buffer>();
|
||||
auto _c = d_c->template get_access<access::mode::read, access::target::host_buffer>();
|
||||
for (int i = 0; i < array_size; i++)
|
||||
{
|
||||
a[i] = _a[i];
|
||||
b[i] = _b[i];
|
||||
c[i] = _c[i];
|
||||
}
|
||||
}
|
||||
|
||||
void getDeviceList(void)
|
||||
{
|
||||
// Get list of platforms
|
||||
std::vector<platform> platforms = platform::get_platforms();
|
||||
|
||||
// Enumerate devices
|
||||
for (unsigned i = 0; i < platforms.size(); i++)
|
||||
{
|
||||
std::vector<device> plat_devices = platforms[i].get_devices();
|
||||
devices.insert(devices.end(), plat_devices.begin(), plat_devices.end());
|
||||
}
|
||||
cached = true;
|
||||
}
|
||||
|
||||
void listDevices(void)
|
||||
{
|
||||
getDeviceList();
|
||||
|
||||
// Print device names
|
||||
if (devices.size() == 0)
|
||||
{
|
||||
std::cerr << "No devices found." << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << std::endl;
|
||||
std::cout << "Devices:" << std::endl;
|
||||
for (int i = 0; i < devices.size(); i++)
|
||||
{
|
||||
std::cout << i << ": " << getDeviceName(i) << std::endl;
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
std::string getDeviceName(const int device)
|
||||
{
|
||||
if (!cached)
|
||||
getDeviceList();
|
||||
|
||||
std::string name;
|
||||
|
||||
if (device < devices.size())
|
||||
{
|
||||
name = devices[device].get_info<info::device::name>();
|
||||
}
|
||||
else
|
||||
{
|
||||
throw std::runtime_error("Error asking for name for non-existant device");
|
||||
}
|
||||
|
||||
return name;
|
||||
}
|
||||
|
||||
std::string getDeviceDriver(const int device)
|
||||
{
|
||||
if (!cached)
|
||||
getDeviceList();
|
||||
|
||||
std::string driver;
|
||||
|
||||
if (device < devices.size())
|
||||
{
|
||||
driver = devices[device].get_info<info::device::driver_version>();
|
||||
}
|
||||
else
|
||||
{
|
||||
throw std::runtime_error("Error asking for driver for non-existant device");
|
||||
}
|
||||
|
||||
return driver;
|
||||
}
|
||||
|
||||
|
||||
// TODO: Fix kernel names to allow multiple template specializations
|
||||
//template class SYCLStream<float>;
|
||||
template class SYCLStream<double>;
|
||||
47
SYCLStream.h
Normal file
47
SYCLStream.h
Normal file
@ -0,0 +1,47 @@
|
||||
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <sstream>
|
||||
|
||||
#include "Stream.h"
|
||||
|
||||
#include "CL/sycl.hpp"
|
||||
|
||||
#define IMPLEMENTATION_STRING "SYCL"
|
||||
|
||||
template <class T>
|
||||
class SYCLStream : public Stream<T>
|
||||
{
|
||||
protected:
|
||||
// Size of arrays
|
||||
unsigned int array_size;
|
||||
|
||||
// SYCL objects
|
||||
cl::sycl::queue *queue;
|
||||
cl::sycl::buffer<T> *d_a;
|
||||
cl::sycl::buffer<T> *d_b;
|
||||
cl::sycl::buffer<T> *d_c;
|
||||
|
||||
public:
|
||||
|
||||
SYCLStream(const unsigned int, const int);
|
||||
~SYCLStream();
|
||||
|
||||
virtual void copy() override;
|
||||
virtual void add() override;
|
||||
virtual void mul() override;
|
||||
virtual void triad() override;
|
||||
|
||||
virtual void write_arrays(const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c) override;
|
||||
virtual void read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c) override;
|
||||
|
||||
};
|
||||
|
||||
// Populate the devices list
|
||||
void getDeviceList(void);
|
||||
37
Stream.h
Normal file
37
Stream.h
Normal file
@ -0,0 +1,37 @@
|
||||
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
#include <string>
|
||||
|
||||
template <class T>
|
||||
class Stream
|
||||
{
|
||||
public:
|
||||
|
||||
virtual ~Stream(){}
|
||||
|
||||
// Kernels
|
||||
// These must be blocking calls
|
||||
virtual void copy() = 0;
|
||||
virtual void mul() = 0;
|
||||
virtual void add() = 0;
|
||||
virtual void triad() = 0;
|
||||
|
||||
// Copy memory between host and device
|
||||
virtual void write_arrays(const std::vector<T>& a, const std::vector<T>& b, const std::vector<T>& c) = 0;
|
||||
virtual void read_arrays(std::vector<T>& a, std::vector<T>& b, std::vector<T>& c) = 0;
|
||||
|
||||
};
|
||||
|
||||
|
||||
// Implementation specific device functions
|
||||
void listDevices(void);
|
||||
std::string getDeviceName(const int);
|
||||
std::string getDeviceDriver(const int);
|
||||
165
common.cpp
165
common.cpp
@ -1,165 +0,0 @@
|
||||
/*=============================================================================
|
||||
*------------------------------------------------------------------------------
|
||||
* Copyright 2015: Tom Deakin, Simon McIntosh-Smith, University of Bristol HPC
|
||||
* Based on John D. McCalpin’s original STREAM benchmark for CPUs
|
||||
*------------------------------------------------------------------------------
|
||||
* License:
|
||||
* 1. You are free to use this program and/or to redistribute
|
||||
* this program.
|
||||
* 2. You are free to modify this program for your own use,
|
||||
* including commercial use, subject to the publication
|
||||
* restrictions in item 3.
|
||||
* 3. You are free to publish results obtained from running this
|
||||
* program, or from works that you derive from this program,
|
||||
* with the following limitations:
|
||||
* 3a. In order to be referred to as "GPU-STREAM benchmark results",
|
||||
* published results must be in conformance to the GPU-STREAM
|
||||
* Run Rules published at
|
||||
* http://github.com/UoB-HPC/GPU-STREAM/wiki/Run-Rules
|
||||
* and incorporated herein by reference.
|
||||
* The copyright holders retain the
|
||||
* right to determine conformity with the Run Rules.
|
||||
* 3b. Results based on modified source code or on runs not in
|
||||
* accordance with the GPU-STREAM Run Rules must be clearly
|
||||
* labelled whenever they are published. Examples of
|
||||
* proper labelling include:
|
||||
* "tuned GPU-STREAM benchmark results"
|
||||
* "based on a variant of the GPU-STREAM benchmark code"
|
||||
* Other comparable, clear and reasonable labelling is
|
||||
* acceptable.
|
||||
* 3c. Submission of results to the GPU-STREAM benchmark web site
|
||||
* is encouraged, but not required.
|
||||
* 4. Use of this program or creation of derived works based on this
|
||||
* program constitutes acceptance of these licensing restrictions.
|
||||
* 5. Absolutely no warranty is expressed or implied.
|
||||
*———————————————————————————————————-----------------------------------------*/
|
||||
|
||||
#include "common.h"
|
||||
|
||||
// Default array size 50 * 2^20 (50*8 Mebibytes double precision)
|
||||
// Use binary powers of two so divides 1024
|
||||
unsigned int ARRAY_SIZE = 52428800;
|
||||
size_t ARRAY_PAD_BYTES = 0;
|
||||
|
||||
unsigned int NTIMES = 10;
|
||||
|
||||
bool useFloat = false;
|
||||
unsigned int groups = 0;
|
||||
unsigned int groupSize = 1024;
|
||||
|
||||
unsigned int deviceIndex = 0;
|
||||
|
||||
int parseUInt(const char *str, unsigned int *output)
|
||||
{
|
||||
char *next;
|
||||
*output = strtoul(str, &next, 10);
|
||||
return !strlen(next);
|
||||
}
|
||||
|
||||
int parseSize(const char *str, size_t *output)
|
||||
{
|
||||
char *next;
|
||||
*output = strtoull(str, &next, 0);
|
||||
int l = strlen(str);
|
||||
if (l) {
|
||||
char c = str[l-1]; // last char.
|
||||
if ((c == 'k') || (c == 'K')) {
|
||||
*output *= 1024;
|
||||
}
|
||||
if ((c == 'm') || (c == 'M')) {
|
||||
*output *= (1024*1024);
|
||||
}
|
||||
|
||||
}
|
||||
return !strlen(next);
|
||||
}
|
||||
|
||||
|
||||
void parseArguments(int argc, char *argv[])
|
||||
{
|
||||
for (int i = 1; i < argc; i++)
|
||||
{
|
||||
if (!strcmp(argv[i], "--list"))
|
||||
{
|
||||
listDevices();
|
||||
exit(0);
|
||||
}
|
||||
else if (!strcmp(argv[i], "--device"))
|
||||
{
|
||||
if (++i >= argc || !parseUInt(argv[i], &deviceIndex))
|
||||
{
|
||||
std::cout << "Invalid device index" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(argv[i], "--arraysize") || !strcmp(argv[i], "-s"))
|
||||
{
|
||||
if (++i >= argc || !parseUInt(argv[i], &ARRAY_SIZE))
|
||||
{
|
||||
std::cout << "Invalid array size" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(argv[i], "--numtimes") || !strcmp(argv[i], "-n"))
|
||||
{
|
||||
if (++i >= argc || !parseUInt(argv[i], &NTIMES))
|
||||
{
|
||||
std::cout << "Invalid number of times" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(argv[i], "--groups"))
|
||||
{
|
||||
if (++i >= argc || !parseUInt(argv[i], &groups))
|
||||
{
|
||||
std::cout << "Invalid group number" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(argv[i], "--groupSize"))
|
||||
{
|
||||
if (++i >= argc || !parseUInt(argv[i], &groupSize))
|
||||
{
|
||||
std::cout << "Invalid group size" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
else if (!strcmp(argv[i], "--pad"))
|
||||
{
|
||||
if (++i >= argc || !parseSize(argv[i], &ARRAY_PAD_BYTES))
|
||||
{
|
||||
std::cout << "Invalid size" << std::endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
}
|
||||
else if (!strcmp(argv[i], "--float"))
|
||||
{
|
||||
useFloat = true;
|
||||
std::cout << "Warning: If number of iterations set >= 8, expect rounding errors with single precision, not apply to AMD device" << std::endl;
|
||||
}
|
||||
else if (!strcmp(argv[i], "--help") || !strcmp(argv[i], "-h"))
|
||||
{
|
||||
std::cout << std::endl;
|
||||
std::cout << "Usage: ./gpu-stream-cuda [OPTIONS]" << std::endl << std::endl;
|
||||
std::cout << "Options:" << std::endl;
|
||||
std::cout << " -h --help Print the message" << std::endl;
|
||||
std::cout << " --list List available devices" << std::endl;
|
||||
std::cout << " --device INDEX Select device at INDEX" << std::endl;
|
||||
std::cout << " -s --arraysize SIZE Use SIZE elements in the array" << std::endl;
|
||||
std::cout << " -n --numtimes NUM Run the test NUM times (NUM >= 2)" << std::endl;
|
||||
std::cout << " --groups Set number of groups to launch - each work-item proceses multiple array items" << std::endl;
|
||||
std::cout << " --groupSize Set size of each group (default 1024)" << std::endl;
|
||||
std::cout << " --pad Add additional array padding. Can use trailing K (KB) or M (MB)" << std::endl;
|
||||
std::cout << " --float Use floats (rather than doubles)" << std::endl;
|
||||
std::cout << std::endl;
|
||||
exit(0);
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << "Unrecognized argument '" << argv[i] << "' (try '--help')"
|
||||
<< std::endl;
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
}
|
||||
115
common.h
115
common.h
@ -1,115 +0,0 @@
|
||||
/*=============================================================================
|
||||
*------------------------------------------------------------------------------
|
||||
* Copyright 2015: Tom Deakin, Simon McIntosh-Smith, University of Bristol HPC
|
||||
* Based on John D. McCalpin’s original STREAM benchmark for CPUs
|
||||
*------------------------------------------------------------------------------
|
||||
* License:
|
||||
* 1. You are free to use this program and/or to redistribute
|
||||
* this program.
|
||||
* 2. You are free to modify this program for your own use,
|
||||
* including commercial use, subject to the publication
|
||||
* restrictions in item 3.
|
||||
* 3. You are free to publish results obtained from running this
|
||||
* program, or from works that you derive from this program,
|
||||
* with the following limitations:
|
||||
* 3a. In order to be referred to as "GPU-STREAM benchmark results",
|
||||
* published results must be in conformance to the GPU-STREAM
|
||||
* Run Rules published at
|
||||
* http://github.com/UoB-HPC/GPU-STREAM/wiki/Run-Rules
|
||||
* and incorporated herein by reference.
|
||||
* The copyright holders retain the
|
||||
* right to determine conformity with the Run Rules.
|
||||
* 3b. Results based on modified source code or on runs not in
|
||||
* accordance with the GPU-STREAM Run Rules must be clearly
|
||||
* labelled whenever they are published. Examples of
|
||||
* proper labelling include:
|
||||
* "tuned GPU-STREAM benchmark results"
|
||||
* "based on a variant of the GPU-STREAM benchmark code"
|
||||
* Other comparable, clear and reasonable labelling is
|
||||
* acceptable.
|
||||
* 3c. Submission of results to the GPU-STREAM benchmark web site
|
||||
* is encouraged, but not required.
|
||||
* 4. Use of this program or creation of derived works based on this
|
||||
* program constitutes acceptance of these licensing restrictions.
|
||||
* 5. Absolutely no warranty is expressed or implied.
|
||||
*———————————————————————————————————-----------------------------------------*/
|
||||
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include <limits>
|
||||
#include <stdexcept>
|
||||
|
||||
#define VERSION_STRING "1.0"
|
||||
|
||||
extern void parseArguments(int argc, char *argv[]);
|
||||
|
||||
extern void listDevices(void);
|
||||
|
||||
extern unsigned int ARRAY_SIZE;
|
||||
extern size_t ARRAY_PAD_BYTES;
|
||||
extern unsigned int NTIMES;
|
||||
|
||||
extern unsigned int groups;
|
||||
extern unsigned int groupSize;
|
||||
extern bool useFloat;
|
||||
|
||||
extern unsigned int deviceIndex;
|
||||
|
||||
|
||||
template < typename T >
|
||||
void check_solution(void* a_in, void* b_in, void* c_in)
|
||||
{
|
||||
// Generate correct solution
|
||||
T golda = 1.0;
|
||||
T goldb = 2.0;
|
||||
T goldc = 0.0;
|
||||
|
||||
T * a = static_cast<T*>(a_in);
|
||||
T * b = static_cast<T*>(b_in);
|
||||
T * c = static_cast<T*>(c_in);
|
||||
|
||||
const T scalar = 3.0;
|
||||
|
||||
for (unsigned int i = 0; i < NTIMES; i++)
|
||||
{
|
||||
// Double
|
||||
goldc = golda;
|
||||
goldb = scalar * goldc;
|
||||
goldc = golda + goldb;
|
||||
golda = goldb + scalar * goldc;
|
||||
}
|
||||
|
||||
// Calculate average error
|
||||
double erra = 0.0;
|
||||
double errb = 0.0;
|
||||
double errc = 0.0;
|
||||
|
||||
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
|
||||
{
|
||||
erra += fabs(a[i] - golda);
|
||||
errb += fabs(b[i] - goldb);
|
||||
errc += fabs(c[i] - goldc);
|
||||
}
|
||||
|
||||
erra /= ARRAY_SIZE;
|
||||
errb /= ARRAY_SIZE;
|
||||
errc /= ARRAY_SIZE;
|
||||
|
||||
double epsi = std::numeric_limits<T>::epsilon() * 100;
|
||||
|
||||
if (erra > epsi)
|
||||
std::cout
|
||||
<< "Validation failed on a[]. Average error " << erra
|
||||
<< std::endl;
|
||||
if (errb > epsi)
|
||||
std::cout
|
||||
<< "Validation failed on b[]. Average error " << errb
|
||||
<< std::endl;
|
||||
if (errc > epsi)
|
||||
std::cout
|
||||
<< "Validation failed on c[]. Average error " << errc
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
9
common.h.in
Normal file
9
common.h.in
Normal file
@ -0,0 +1,9 @@
|
||||
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#define VERSION_STRING "@gpu-stream_VERSION_MAJOR@.@gpu-stream_VERSION_MINOR@"
|
||||
|
||||
507
cuda-stream.cu
507
cuda-stream.cu
@ -1,507 +0,0 @@
|
||||
/*=============================================================================
|
||||
*------------------------------------------------------------------------------
|
||||
* Copyright 2015: Tom Deakin, Simon McIntosh-Smith, University of Bristol HPC
|
||||
* Based on John D. McCalpin’s original STREAM benchmark for CPUs
|
||||
*------------------------------------------------------------------------------
|
||||
* License:
|
||||
* 1. You are free to use this program and/or to redistribute
|
||||
* this program.
|
||||
* 2. You are free to modify this program for your own use,
|
||||
* including commercial use, subject to the publication
|
||||
* restrictions in item 3.
|
||||
* 3. You are free to publish results obtained from running this
|
||||
* program, or from works that you derive from this program,
|
||||
* with the following limitations:
|
||||
* 3a. In order to be referred to as "GPU-STREAM benchmark results",
|
||||
* published results must be in conformance to the GPU-STREAM
|
||||
* Run Rules published at
|
||||
* http://github.com/UoB-HPC/GPU-STREAM/wiki/Run-Rules
|
||||
* and incorporated herein by reference.
|
||||
* The copyright holders retain the
|
||||
* right to determine conformity with the Run Rules.
|
||||
* 3b. Results based on modified source code or on runs not in
|
||||
* accordance with the GPU-STREAM Run Rules must be clearly
|
||||
* labelled whenever they are published. Examples of
|
||||
* proper labelling include:
|
||||
* "tuned GPU-STREAM benchmark results"
|
||||
* "based on a variant of the GPU-STREAM benchmark code"
|
||||
* Other comparable, clear and reasonable labelling is
|
||||
* acceptable.
|
||||
* 3c. Submission of results to the GPU-STREAM benchmark web site
|
||||
* is encouraged, but not required.
|
||||
* 4. Use of this program or creation of derived works based on this
|
||||
* program constitutes acceptance of these licensing restrictions.
|
||||
* 5. Absolutely no warranty is expressed or implied.
|
||||
*———————————————————————————————————-----------------------------------------*/
|
||||
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <vector>
|
||||
#include <chrono>
|
||||
#include <cfloat>
|
||||
#include <cmath>
|
||||
|
||||
#include <cuda.h>
|
||||
#include "common.h"
|
||||
|
||||
std::string getDeviceName(int device);
|
||||
int getDriver(void);
|
||||
|
||||
// Code to check CUDA errors
|
||||
void check_cuda_error(void)
|
||||
{
|
||||
cudaError_t err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
std::cerr
|
||||
<< "Error: "
|
||||
<< cudaGetErrorString(err)
|
||||
<< std::endl;
|
||||
exit(err);
|
||||
}
|
||||
}
|
||||
|
||||
// looper function place more work inside each work item.
|
||||
// Goal is reduce the dispatch overhead for each group, and also give more controlover the order of memory operations
|
||||
template <typename T>
|
||||
__global__ void
|
||||
copy_looper(const T * a, T * c, int ARRAY_SIZE)
|
||||
{
|
||||
int offset = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
int stride = blockDim.x * gridDim.x;
|
||||
|
||||
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
|
||||
c[i] = a[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
mul_looper(T * b, const T * c, int ARRAY_SIZE)
|
||||
{
|
||||
int offset = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int stride = blockDim.x * gridDim.x;
|
||||
const T scalar = 3.0;
|
||||
|
||||
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
|
||||
b[i] = scalar * c[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
add_looper(const T * a, const T * b, T * c, int ARRAY_SIZE)
|
||||
{
|
||||
int offset = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int stride = blockDim.x * gridDim.x;
|
||||
|
||||
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
|
||||
c[i] = a[i] + b[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
triad_looper( T * a, const T * b, const T * c, int ARRAY_SIZE)
|
||||
{
|
||||
int offset = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int stride = blockDim.x * gridDim.x;
|
||||
const T scalar = 3.0;
|
||||
|
||||
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void copy(const T * a, T * c)
|
||||
{
|
||||
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
c[i] = a[i];
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void mul(T * b, const T * c)
|
||||
{
|
||||
const T scalar = 3.0;
|
||||
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
b[i] = scalar * c[i];
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void add(const T * a, const T * b, T * c)
|
||||
{
|
||||
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
c[i] = a[i] + b[i];
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void triad(T * a, const T * b, const T * c)
|
||||
{
|
||||
const T scalar = 3.0;
|
||||
const int i = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
|
||||
// Print out run information
|
||||
std::cout
|
||||
<< "GPU-STREAM" << std::endl
|
||||
<< "Version: " << VERSION_STRING << std::endl
|
||||
<< "Implementation: CUDA" << std::endl;
|
||||
|
||||
parseArguments(argc, argv);
|
||||
|
||||
if (NTIMES < 2)
|
||||
throw std::runtime_error("Chosen number of times is invalid, must be >= 2");
|
||||
|
||||
// Config grid size and group size for kernel launching
|
||||
int gridSize;
|
||||
if (groups) {
|
||||
gridSize = groups * groupSize;
|
||||
} else {
|
||||
gridSize = ARRAY_SIZE;
|
||||
}
|
||||
|
||||
float operationsPerWorkitem = (float)ARRAY_SIZE / (float)gridSize;
|
||||
std::cout << "GridSize: " << gridSize << " work-items" << std::endl;
|
||||
std::cout << "GroupSize: " << groupSize << " work-items" << std::endl;
|
||||
std::cout << "Operations/Work-item: " << operationsPerWorkitem << std::endl;
|
||||
if (groups) std::cout << "Using looper kernels:" << std::endl;
|
||||
|
||||
std::cout << "Precision: ";
|
||||
if (useFloat) std::cout << "float";
|
||||
else std::cout << "double";
|
||||
std::cout << std::endl << std::endl;
|
||||
|
||||
std::cout << "Running kernels " << NTIMES << " times" << std::endl;
|
||||
|
||||
if (ARRAY_SIZE % 1024 != 0)
|
||||
{
|
||||
unsigned int OLD_ARRAY_SIZE = ARRAY_SIZE;
|
||||
ARRAY_SIZE -= ARRAY_SIZE % 1024;
|
||||
std::cout
|
||||
<< "Warning: array size must divide 1024" << std::endl
|
||||
<< "Resizing array from " << OLD_ARRAY_SIZE
|
||||
<< " to " << ARRAY_SIZE << std::endl;
|
||||
if (ARRAY_SIZE == 0)
|
||||
throw std::runtime_error("Array size must be >= 1024");
|
||||
}
|
||||
|
||||
// Get precision (used to reset later)
|
||||
std::streamsize ss = std::cout.precision();
|
||||
|
||||
size_t DATATYPE_SIZE;
|
||||
|
||||
if (useFloat)
|
||||
{
|
||||
DATATYPE_SIZE = sizeof(float);
|
||||
}
|
||||
else
|
||||
{
|
||||
DATATYPE_SIZE = sizeof(double);
|
||||
}
|
||||
|
||||
// Display number of bytes in array
|
||||
std::cout << std::setprecision(1) << std::fixed
|
||||
<< "Array size: " << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
||||
<< " (=" << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
||||
<< std::endl;
|
||||
std::cout << "Total size: " << 3.0*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
||||
<< " (=" << 3.0*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
||||
<< std::endl;
|
||||
|
||||
// Reset precision
|
||||
std::cout.precision(ss);
|
||||
|
||||
// Check device index is in range
|
||||
int count;
|
||||
cudaGetDeviceCount(&count);
|
||||
check_cuda_error();
|
||||
if (deviceIndex >= count)
|
||||
throw std::runtime_error("Chosen device index is invalid");
|
||||
cudaSetDevice(deviceIndex);
|
||||
check_cuda_error();
|
||||
|
||||
// Print out device name
|
||||
std::cout << "Using CUDA device " << getDeviceName(deviceIndex) << std::endl;
|
||||
|
||||
// Print out device CUDA driver version
|
||||
std::cout << "Driver: " << getDriver() << std::endl;
|
||||
|
||||
// Check buffers fit on the device
|
||||
cudaDeviceProp props;
|
||||
cudaGetDeviceProperties(&props, deviceIndex);
|
||||
if (props.totalGlobalMem < 3*DATATYPE_SIZE*ARRAY_SIZE)
|
||||
throw std::runtime_error("Device does not have enough memory for all 3 buffers");
|
||||
|
||||
// Create host vectors
|
||||
void * h_a = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||
void * h_b = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||
void * h_c = malloc(ARRAY_SIZE*DATATYPE_SIZE);
|
||||
|
||||
// Initilise arrays
|
||||
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
|
||||
{
|
||||
if (useFloat)
|
||||
{
|
||||
((float*)h_a)[i] = 1.0f;
|
||||
((float*)h_b)[i] = 2.0f;
|
||||
((float*)h_c)[i] = 0.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
((double*)h_a)[i] = 1.0;
|
||||
((double*)h_b)[i] = 2.0;
|
||||
((double*)h_c)[i] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Create device buffers
|
||||
void * d_a, * d_b, *d_c;
|
||||
cudaMalloc(&d_a, ARRAY_SIZE*DATATYPE_SIZE);
|
||||
check_cuda_error();
|
||||
cudaMalloc(&d_b, ARRAY_SIZE*DATATYPE_SIZE);
|
||||
check_cuda_error();
|
||||
cudaMalloc(&d_c, ARRAY_SIZE*DATATYPE_SIZE);
|
||||
check_cuda_error();
|
||||
|
||||
// Copy host memory to device
|
||||
cudaMemcpy(d_a, h_a, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
|
||||
check_cuda_error();
|
||||
cudaMemcpy(d_b, h_b, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
|
||||
check_cuda_error();
|
||||
cudaMemcpy(d_c, h_c, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyHostToDevice);
|
||||
check_cuda_error();
|
||||
|
||||
std::cout << "d_a=" << (void*)d_a << std::endl;
|
||||
std::cout << "d_b=" << (void*)d_b << std::endl;
|
||||
std::cout << "d_c=" << (void*)d_c << std::endl;
|
||||
|
||||
// Make sure the copies are finished
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
|
||||
// List of times
|
||||
std::vector< std::vector<double> > timings;
|
||||
|
||||
// Declare timers
|
||||
std::chrono::high_resolution_clock::time_point t1, t2;
|
||||
|
||||
// Main loop
|
||||
for (unsigned int k = 0; k < NTIMES; k++)
|
||||
{
|
||||
std::vector<double> times;
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (groups) {
|
||||
if (useFloat)
|
||||
copy_looper<float><<<gridSize,groupSize>>>((float*)d_a, (float*)d_c, ARRAY_SIZE);
|
||||
else
|
||||
copy_looper<double><<<gridSize,groupSize>>>((double*)d_a, (double*)d_c, ARRAY_SIZE);
|
||||
} else {
|
||||
if (useFloat)
|
||||
copy<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_c);
|
||||
else
|
||||
copy<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_c);
|
||||
}
|
||||
|
||||
check_cuda_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (groups) {
|
||||
if (useFloat)
|
||||
mul_looper<float><<<gridSize,groupSize>>>((float*)d_b, (float*)d_c, ARRAY_SIZE);
|
||||
else
|
||||
mul_looper<double><<<gridSize,groupSize>>>((double*)d_b, (double*)d_c, ARRAY_SIZE);
|
||||
} else {
|
||||
if (useFloat)
|
||||
mul<<<ARRAY_SIZE/1024, 1024>>>((float*)d_b, (float*)d_c);
|
||||
else
|
||||
mul<<<ARRAY_SIZE/1024, 1024>>>((double*)d_b, (double*)d_c);
|
||||
}
|
||||
check_cuda_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (groups) {
|
||||
if (useFloat)
|
||||
add_looper<float><<<gridSize,groupSize>>>((float*)d_a, (float*)d_b, (float*)d_c, ARRAY_SIZE);
|
||||
else
|
||||
add_looper<double><<<gridSize,groupSize>>>((double*)d_a, (double*)d_b, (double*)d_c, ARRAY_SIZE);
|
||||
} else {
|
||||
if (useFloat)
|
||||
add<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_b, (float*)d_c);
|
||||
else
|
||||
add<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_b, (double*)d_c);
|
||||
}
|
||||
check_cuda_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (groups) {
|
||||
if (useFloat)
|
||||
triad_looper<float><<<gridSize,groupSize>>>((float*)d_a, (float*)d_b, (float*)d_c, ARRAY_SIZE);
|
||||
else
|
||||
triad_looper<double><<<gridSize,groupSize>>>((double*)d_a, (double*)d_b, (double*)d_c, ARRAY_SIZE);
|
||||
} else {
|
||||
if (useFloat)
|
||||
triad<<<ARRAY_SIZE/1024, 1024>>>((float*)d_a, (float*)d_b, (float*)d_c);
|
||||
else
|
||||
triad<<<ARRAY_SIZE/1024, 1024>>>((double*)d_a, (double*)d_b, (double*)d_c);
|
||||
}
|
||||
check_cuda_error();
|
||||
cudaDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
timings.push_back(times);
|
||||
|
||||
}
|
||||
|
||||
// Check solutions
|
||||
cudaMemcpy(h_a, d_a, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
|
||||
check_cuda_error();
|
||||
cudaMemcpy(h_b, d_b, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
|
||||
check_cuda_error();
|
||||
cudaMemcpy(h_c, d_c, ARRAY_SIZE*DATATYPE_SIZE, cudaMemcpyDeviceToHost);
|
||||
check_cuda_error();
|
||||
|
||||
if (useFloat)
|
||||
{
|
||||
check_solution<float>(h_a, h_b, h_c);
|
||||
}
|
||||
else
|
||||
{
|
||||
check_solution<double>(h_a, h_b, h_c);
|
||||
}
|
||||
|
||||
// Crunch results
|
||||
size_t sizes[4] = {
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE
|
||||
};
|
||||
double min[4] = {DBL_MAX, DBL_MAX, DBL_MAX, DBL_MAX};
|
||||
double max[4] = {0.0, 0.0, 0.0, 0.0};
|
||||
double avg[4] = {0.0, 0.0, 0.0, 0.0};
|
||||
|
||||
// Ignore first result
|
||||
for (unsigned int i = 1; i < NTIMES; i++)
|
||||
{
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
avg[j] += timings[i][j];
|
||||
min[j] = std::min(min[j], timings[i][j]);
|
||||
max[j] = std::max(max[j], timings[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 0; j < 4; j++)
|
||||
avg[j] /= (double)(NTIMES-1);
|
||||
|
||||
double geomean = 1.0;
|
||||
for (int j = 0; j < 4; j++) {
|
||||
geomean *= (sizes[j]/min[j]);
|
||||
}
|
||||
geomean = pow(geomean, 0.25);
|
||||
|
||||
// Display results
|
||||
std::string labels[] = {"Copy", "Mul", "Add", "Triad"};
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << "Function"
|
||||
<< std::left << std::setw(12) << "MBytes/sec"
|
||||
<< std::left << std::setw(12) << "Min (sec)"
|
||||
<< std::left << std::setw(12) << "Max"
|
||||
<< std::left << std::setw(12) << "Average"
|
||||
<< std::endl;
|
||||
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << labels[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * sizes[j]/min[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << min[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << max[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << avg[j]
|
||||
<< std::endl;
|
||||
}
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << "GEOMEAN"
|
||||
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * geomean
|
||||
<< std::endl;
|
||||
|
||||
// Free host vectors
|
||||
free(h_a);
|
||||
free(h_b);
|
||||
free(h_c);
|
||||
|
||||
// Free cuda buffers
|
||||
cudaFree(d_a);
|
||||
check_cuda_error();
|
||||
cudaFree(d_b);
|
||||
check_cuda_error();
|
||||
cudaFree(d_c);
|
||||
check_cuda_error();
|
||||
|
||||
}
|
||||
|
||||
std::string getDeviceName(int device)
|
||||
{
|
||||
struct cudaDeviceProp prop;
|
||||
cudaGetDeviceProperties(&prop, device);
|
||||
check_cuda_error();
|
||||
return std::string(prop.name);
|
||||
}
|
||||
|
||||
int getDriver(void)
|
||||
{
|
||||
int driver;
|
||||
cudaDriverGetVersion(&driver);
|
||||
check_cuda_error();
|
||||
return driver;
|
||||
}
|
||||
|
||||
void listDevices(void)
|
||||
{
|
||||
// Get number of devices
|
||||
int count;
|
||||
cudaGetDeviceCount(&count);
|
||||
check_cuda_error();
|
||||
|
||||
// Print device names
|
||||
if (count == 0)
|
||||
{
|
||||
std::cout << "No devices found." << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << std::endl;
|
||||
std::cout << "Devices:" << std::endl;
|
||||
for (int i = 0; i < count; i++)
|
||||
{
|
||||
std::cout << i << ": " << getDeviceName(i) << std::endl;
|
||||
check_cuda_error();
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
531
hip-stream.cpp
531
hip-stream.cpp
@ -1,531 +0,0 @@
|
||||
#include "hip_runtime.h"
|
||||
/*=============================================================================
|
||||
*------------------------------------------------------------------------------
|
||||
* Copyright 2015: Tom Deakin, Simon McIntosh-Smith, University of Bristol HPC
|
||||
* Based on John D. McCalpin’s original STREAM benchmark for CPUs
|
||||
*------------------------------------------------------------------------------
|
||||
* License:
|
||||
* 1. You are free to use this program and/or to redistribute
|
||||
* this program.
|
||||
* 2. You are free to modify this program for your own use,
|
||||
* including commercial use, subject to the publication
|
||||
* restrictions in item 3.
|
||||
* 3. You are free to publish results obtained from running this
|
||||
* program, or from works that you derive from this program,
|
||||
* with the following limitations:
|
||||
* 3a. In order to be referred to as "GPU-STREAM benchmark results",
|
||||
* published results must be in conformance to the GPU-STREAM
|
||||
* Run Rules published at
|
||||
* http://github.com/UoB-HPC/GPU-STREAM/wiki/Run-Rules
|
||||
* and incorporated herein by reference.
|
||||
* The copyright holders retain the
|
||||
* right to determine conformity with the Run Rules.
|
||||
* 3b. Results based on modified source code or on runs not in
|
||||
* accordance with the GPU-STREAM Run Rules must be clearly
|
||||
* labelled whenever they are published. Examples of
|
||||
* proper labelling include:
|
||||
* "tuned GPU-STREAM benchmark results"
|
||||
* "based on a variant of the GPU-STREAM benchmark code"
|
||||
* Other comparable, clear and reasonable labelling is
|
||||
* acceptable.
|
||||
* 3c. Submission of results to the GPU-STREAM benchmark web site
|
||||
* is encouraged, but not required.
|
||||
* 4. Use of this program or creation of derived works based on this
|
||||
* program constitutes acceptance of these licensing restrictions.
|
||||
* 5. Absolutely no warranty is expressed or implied.
|
||||
*———————————————————————————————————-----------------------------------------*/
|
||||
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <vector>
|
||||
#include <chrono>
|
||||
#include <cfloat>
|
||||
#include <cmath>
|
||||
|
||||
//#include <cuda.h>
|
||||
#include "common.h"
|
||||
|
||||
std::string getDeviceName(int device);
|
||||
int getDriver(void);
|
||||
|
||||
// Code to check CUDA errors
|
||||
void check_cuda_error(void)
|
||||
{
|
||||
hipError_t err = hipGetLastError();
|
||||
if (err != hipSuccess)
|
||||
{
|
||||
std::cerr
|
||||
<< "Error: "
|
||||
<< hipGetErrorString(err)
|
||||
<< std::endl;
|
||||
exit(err);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// looper function place more work inside each work item.
|
||||
// Goal is reduce the dispatch overhead for each group, and also give more controlover the order of memory operations
|
||||
template <typename T>
|
||||
__global__ void
|
||||
copy_looper(hipLaunchParm lp, const T * a, T * c, int ARRAY_SIZE)
|
||||
{
|
||||
int offset = (hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x);
|
||||
int stride = hipBlockDim_x * hipGridDim_x;
|
||||
|
||||
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
|
||||
c[i] = a[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
mul_looper(hipLaunchParm lp, T * b, const T * c, int ARRAY_SIZE)
|
||||
{
|
||||
int offset = hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x;
|
||||
int stride = hipBlockDim_x * hipGridDim_x;
|
||||
const T scalar = 3.0;
|
||||
|
||||
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
|
||||
b[i] = scalar * c[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
add_looper(hipLaunchParm lp, const T * a, const T * b, T * c, int ARRAY_SIZE)
|
||||
{
|
||||
int offset = hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x;
|
||||
int stride = hipBlockDim_x * hipGridDim_x;
|
||||
|
||||
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
|
||||
c[i] = a[i] + b[i];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
triad_looper(hipLaunchParm lp, T * a, const T * b, const T * c, int ARRAY_SIZE)
|
||||
{
|
||||
int offset = hipBlockIdx_x * hipBlockDim_x + hipThreadIdx_x;
|
||||
int stride = hipBlockDim_x * hipGridDim_x;
|
||||
const T scalar = 3.0;
|
||||
|
||||
for (int i=offset; i<ARRAY_SIZE; i+=stride) {
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
copy(hipLaunchParm lp, const T * a, T * c)
|
||||
{
|
||||
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||
c[i] = a[i];
|
||||
}
|
||||
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
mul(hipLaunchParm lp, T * b, const T * c)
|
||||
{
|
||||
const T scalar = 3.0;
|
||||
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||
b[i] = scalar * c[i];
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
add(hipLaunchParm lp, const T * a, const T * b, T * c)
|
||||
{
|
||||
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||
c[i] = a[i] + b[i];
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__global__ void
|
||||
triad(hipLaunchParm lp, T * a, const T * b, const T * c)
|
||||
{
|
||||
const T scalar = 3.0;
|
||||
const int i = hipBlockDim_x * hipBlockIdx_x + hipThreadIdx_x;
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
|
||||
// Print out run information
|
||||
std::cout
|
||||
<< "GPU-STREAM" << std::endl
|
||||
<< "Version: " << VERSION_STRING << std::endl
|
||||
<< "Implementation: HIP" << std::endl;
|
||||
|
||||
parseArguments(argc, argv);
|
||||
|
||||
if (NTIMES < 2)
|
||||
throw std::runtime_error("Chosen number of times is invalid, must be >= 2");
|
||||
|
||||
// Config grid size and group size for kernel launching
|
||||
int gridSize;
|
||||
if (groups) {
|
||||
gridSize = groups * groupSize;
|
||||
} else {
|
||||
gridSize = ARRAY_SIZE;
|
||||
}
|
||||
|
||||
float operationsPerWorkitem = (float)ARRAY_SIZE / (float)gridSize;
|
||||
std::cout << "GridSize: " << gridSize << " work-items" << std::endl;
|
||||
std::cout << "GroupSize: " << groupSize << " work-items" << std::endl;
|
||||
std::cout << "Operations/Work-item: " << operationsPerWorkitem << std::endl;
|
||||
if (groups) std::cout << "Using looper kernels:" << std::endl;
|
||||
|
||||
std::cout << "Precision: ";
|
||||
if (useFloat) std::cout << "float";
|
||||
else std::cout << "double";
|
||||
std::cout << std::endl << std::endl;
|
||||
|
||||
std::cout << "Running kernels " << NTIMES << " times" << std::endl;
|
||||
|
||||
if (ARRAY_SIZE % 1024 != 0)
|
||||
{
|
||||
unsigned int OLD_ARRAY_SIZE = ARRAY_SIZE;
|
||||
ARRAY_SIZE -= ARRAY_SIZE % 1024;
|
||||
std::cout
|
||||
<< "Warning: array size must divide 1024" << std::endl
|
||||
<< "Resizing array from " << OLD_ARRAY_SIZE
|
||||
<< " to " << ARRAY_SIZE << std::endl;
|
||||
if (ARRAY_SIZE == 0)
|
||||
throw std::runtime_error("Array size must be >= 1024");
|
||||
}
|
||||
|
||||
// Get precision (used to reset later)
|
||||
std::streamsize ss = std::cout.precision();
|
||||
|
||||
size_t DATATYPE_SIZE;
|
||||
|
||||
if (useFloat)
|
||||
{
|
||||
DATATYPE_SIZE = sizeof(float);
|
||||
}
|
||||
else
|
||||
{
|
||||
DATATYPE_SIZE = sizeof(double);
|
||||
}
|
||||
|
||||
// Display number of bytes in array
|
||||
std::cout << std::setprecision(1) << std::fixed
|
||||
<< "Array size: " << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
||||
<< " (=" << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
||||
<< " " << ARRAY_PAD_BYTES << " bytes padding"
|
||||
<< std::endl;
|
||||
std::cout << "Total size: " << 3.0*(ARRAY_SIZE*DATATYPE_SIZE + ARRAY_PAD_BYTES) /1024.0/1024.0 << " MB"
|
||||
<< " (=" << 3.0*(ARRAY_SIZE*DATATYPE_SIZE + ARRAY_PAD_BYTES) /1024.0/1024.0/1024.0 << " GB)"
|
||||
<< std::endl;
|
||||
|
||||
// Reset precision
|
||||
std::cout.precision(ss);
|
||||
|
||||
// Check device index is in range
|
||||
int count;
|
||||
hipGetDeviceCount(&count);
|
||||
check_cuda_error();
|
||||
if (deviceIndex >= count)
|
||||
throw std::runtime_error("Chosen device index is invalid");
|
||||
hipSetDevice(deviceIndex);
|
||||
check_cuda_error();
|
||||
|
||||
|
||||
hipDeviceProp_t props;
|
||||
hipGetDeviceProperties(&props, deviceIndex);
|
||||
|
||||
// Print out device name
|
||||
std::cout << "Using HIP device " << getDeviceName(deviceIndex) << " (compute_units=" << props.multiProcessorCount << ")" << std::endl;
|
||||
|
||||
// Print out device HIP driver version
|
||||
std::cout << "Driver: " << getDriver() << std::endl;
|
||||
|
||||
|
||||
|
||||
|
||||
// Check buffers fit on the device
|
||||
if (props.totalGlobalMem < 3*DATATYPE_SIZE*ARRAY_SIZE)
|
||||
throw std::runtime_error("Device does not have enough memory for all 3 buffers");
|
||||
|
||||
//int cus = props.multiProcessorCount;
|
||||
|
||||
// Create host vectors
|
||||
void * h_a = malloc(ARRAY_SIZE*DATATYPE_SIZE );
|
||||
void * h_b = malloc(ARRAY_SIZE*DATATYPE_SIZE );
|
||||
void * h_c = malloc(ARRAY_SIZE*DATATYPE_SIZE );
|
||||
|
||||
// Initialise arrays
|
||||
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
|
||||
{
|
||||
if (useFloat)
|
||||
{
|
||||
((float*)h_a)[i] = 1.0f;
|
||||
((float*)h_b)[i] = 2.0f;
|
||||
((float*)h_c)[i] = 0.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
((double*)h_a)[i] = 1.0;
|
||||
((double*)h_b)[i] = 2.0;
|
||||
((double*)h_c)[i] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Create device buffers
|
||||
char * d_a, * d_b, *d_c;
|
||||
hipMalloc(&d_a, ARRAY_SIZE*DATATYPE_SIZE + ARRAY_PAD_BYTES);
|
||||
check_cuda_error();
|
||||
hipMalloc(&d_b, ARRAY_SIZE*DATATYPE_SIZE + ARRAY_PAD_BYTES);
|
||||
d_b += ARRAY_PAD_BYTES;
|
||||
check_cuda_error();
|
||||
hipMalloc(&d_c, ARRAY_SIZE*DATATYPE_SIZE + ARRAY_PAD_BYTES);
|
||||
d_c += ARRAY_PAD_BYTES;
|
||||
check_cuda_error();
|
||||
|
||||
// Copy host memory to device
|
||||
hipMemcpy(d_a, h_a, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyHostToDevice);
|
||||
check_cuda_error();
|
||||
hipMemcpy(d_b, h_b, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyHostToDevice);
|
||||
check_cuda_error();
|
||||
hipMemcpy(d_c, h_c, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyHostToDevice);
|
||||
check_cuda_error();
|
||||
|
||||
|
||||
std::cout << "d_a=" << (void*)d_a << std::endl;
|
||||
std::cout << "d_b=" << (void*)d_b << std::endl;
|
||||
std::cout << "d_c=" << (void*)d_c << std::endl;
|
||||
|
||||
// Make sure the copies are finished
|
||||
hipDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
|
||||
|
||||
|
||||
// List of times
|
||||
std::vector< std::vector<double> > timings;
|
||||
|
||||
// Declare timers
|
||||
std::chrono::high_resolution_clock::time_point t1, t2;
|
||||
|
||||
// Main loop
|
||||
for (unsigned int k = 0; k < NTIMES; k++)
|
||||
{
|
||||
std::vector<double> times;
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (groups) {
|
||||
if (useFloat)
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(copy_looper<float>), dim3(gridSize), dim3(groupSize), 0, 0, (float*)d_a, (float*)d_c, ARRAY_SIZE);
|
||||
else
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(copy_looper<double>), dim3(gridSize), dim3(groupSize), 0, 0, (double*)d_a, (double*)d_c, ARRAY_SIZE);
|
||||
} else {
|
||||
if (useFloat)
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(copy), dim3(ARRAY_SIZE/groupSize), dim3(groupSize), 0, 0, (float*)d_a, (float*)d_c);
|
||||
else
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(copy), dim3(ARRAY_SIZE/groupSize), dim3(groupSize), 0, 0, (double*)d_a, (double*)d_c);
|
||||
}
|
||||
check_cuda_error();
|
||||
hipDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (groups) {
|
||||
if (useFloat)
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(mul_looper), dim3(gridSize), dim3(groupSize), 0, 0, (float*)d_b, (float*)d_c, ARRAY_SIZE);
|
||||
else
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(mul_looper), dim3(gridSize), dim3(groupSize), 0, 0, (double*)d_b, (double*)d_c, ARRAY_SIZE);
|
||||
} else {
|
||||
if (useFloat)
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(mul), dim3(ARRAY_SIZE/groupSize), dim3(groupSize), 0, 0, (float*)d_b, (float*)d_c);
|
||||
else
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(mul), dim3(ARRAY_SIZE/groupSize), dim3(groupSize), 0, 0, (double*)d_b, (double*)d_c);
|
||||
}
|
||||
check_cuda_error();
|
||||
hipDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (groups) {
|
||||
if (useFloat)
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(add_looper), dim3(gridSize), dim3(groupSize), 0, 0, (float*)d_a, (float*)d_b, (float*)d_c, ARRAY_SIZE);
|
||||
else
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(add_looper), dim3(gridSize), dim3(groupSize), 0, 0, (double*)d_a, (double*)d_b, (double*)d_c, ARRAY_SIZE);
|
||||
} else {
|
||||
if (useFloat)
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(add), dim3(ARRAY_SIZE/groupSize), dim3(groupSize), 0, 0, (float*)d_a, (float*)d_b, (float*)d_c);
|
||||
else
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(add), dim3(ARRAY_SIZE/groupSize), dim3(groupSize), 0, 0, (double*)d_a, (double*)d_b, (double*)d_c);
|
||||
}
|
||||
check_cuda_error();
|
||||
hipDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
if (groups) {
|
||||
if (useFloat)
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(triad_looper), dim3(gridSize), dim3(groupSize), 0, 0, (float*)d_a, (float*)d_b, (float*)d_c, ARRAY_SIZE);
|
||||
else
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(triad_looper), dim3(gridSize), dim3(groupSize), 0, 0, (double*)d_a, (double*)d_b, (double*)d_c, ARRAY_SIZE);
|
||||
} else {
|
||||
if (useFloat)
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(triad), dim3(ARRAY_SIZE/groupSize), dim3(groupSize), 0, 0, (float*)d_a, (float*)d_b, (float*)d_c);
|
||||
else
|
||||
hipLaunchKernel(HIP_KERNEL_NAME(triad), dim3(ARRAY_SIZE/groupSize), dim3(groupSize), 0, 0, (double*)d_a, (double*)d_b, (double*)d_c);
|
||||
}
|
||||
|
||||
check_cuda_error();
|
||||
hipDeviceSynchronize();
|
||||
check_cuda_error();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
timings.push_back(times);
|
||||
|
||||
}
|
||||
|
||||
// Check solutions
|
||||
hipMemcpy(h_a, d_a, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyDeviceToHost);
|
||||
check_cuda_error();
|
||||
hipMemcpy(h_b, d_b, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyDeviceToHost);
|
||||
check_cuda_error();
|
||||
hipMemcpy(h_c, d_c, ARRAY_SIZE*DATATYPE_SIZE, hipMemcpyDeviceToHost);
|
||||
check_cuda_error();
|
||||
|
||||
if (useFloat)
|
||||
{
|
||||
check_solution<float>(h_a, h_b, h_c);
|
||||
}
|
||||
else
|
||||
{
|
||||
check_solution<double>(h_a, h_b, h_c);
|
||||
}
|
||||
|
||||
// Crunch results
|
||||
size_t sizes[4] = {
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE
|
||||
};
|
||||
double min[4] = {DBL_MAX, DBL_MAX, DBL_MAX, DBL_MAX};
|
||||
double max[4] = {0.0, 0.0, 0.0, 0.0};
|
||||
double avg[4] = {0.0, 0.0, 0.0, 0.0};
|
||||
|
||||
// Ignore first result
|
||||
for (unsigned int i = 1; i < NTIMES; i++)
|
||||
{
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
avg[j] += timings[i][j];
|
||||
min[j] = std::min(min[j], timings[i][j]);
|
||||
max[j] = std::max(max[j], timings[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 0; j < 4; j++) {
|
||||
avg[j] /= (double)(NTIMES-1);
|
||||
}
|
||||
|
||||
double geomean = 1.0;
|
||||
for (int j = 0; j < 4; j++) {
|
||||
geomean *= (sizes[j]/min[j]);
|
||||
}
|
||||
geomean = pow(geomean, 0.25);
|
||||
|
||||
// Display results
|
||||
std::string labels[] = {"Copy", "Mul", "Add", "Triad"};
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << "Function"
|
||||
<< std::left << std::setw(12) << "MBytes/sec"
|
||||
<< std::left << std::setw(12) << "Min (sec)"
|
||||
<< std::left << std::setw(12) << "Max"
|
||||
<< std::left << std::setw(12) << "Average"
|
||||
<< std::endl;
|
||||
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << labels[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * sizes[j]/min[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << min[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << max[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << avg[j]
|
||||
<< std::endl;
|
||||
}
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << "GEOMEAN"
|
||||
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * geomean
|
||||
<< std::endl;
|
||||
|
||||
// Free host vectors
|
||||
free(h_a);
|
||||
free(h_b);
|
||||
free(h_c);
|
||||
|
||||
// Free cuda buffers
|
||||
hipFree(d_a);
|
||||
check_cuda_error();
|
||||
hipFree(d_b);
|
||||
check_cuda_error();
|
||||
hipFree(d_c);
|
||||
check_cuda_error();
|
||||
|
||||
}
|
||||
|
||||
std::string getDeviceName(int device)
|
||||
{
|
||||
struct hipDeviceProp_t prop;
|
||||
hipGetDeviceProperties(&prop, device);
|
||||
check_cuda_error();
|
||||
return std::string(prop.name);
|
||||
}
|
||||
|
||||
int getDriver(void)
|
||||
{
|
||||
int driver;
|
||||
hipDriverGetVersion(&driver);
|
||||
check_cuda_error();
|
||||
return driver;
|
||||
}
|
||||
|
||||
void listDevices(void)
|
||||
{
|
||||
// Get number of devices
|
||||
int count;
|
||||
hipGetDeviceCount(&count);
|
||||
check_cuda_error();
|
||||
|
||||
// Print device names
|
||||
if (count == 0)
|
||||
{
|
||||
std::cout << "No devices found." << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << std::endl;
|
||||
std::cout << "Devices:" << std::endl;
|
||||
for (int i = 0; i < count; i++)
|
||||
{
|
||||
std::cout << i << ": " << getDeviceName(i) << std::endl;
|
||||
check_cuda_error();
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
332
main.cpp
Normal file
332
main.cpp
Normal file
@ -0,0 +1,332 @@
|
||||
|
||||
// Copyright (c) 2015-16 Tom Deakin, Simon McIntosh-Smith,
|
||||
// University of Bristol HPC
|
||||
//
|
||||
// For full license terms please see the LICENSE file distributed with this
|
||||
// source code
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
#include <cmath>
|
||||
#include <limits>
|
||||
#include <chrono>
|
||||
#include <algorithm>
|
||||
#include <iomanip>
|
||||
#include <cstring>
|
||||
|
||||
#include "common.h"
|
||||
#include "Stream.h"
|
||||
|
||||
#if defined(CUDA)
|
||||
#include "CUDAStream.h"
|
||||
#elif defined(OCL)
|
||||
#include "OCLStream.h"
|
||||
#elif defined(USE_RAJA)
|
||||
#include "RAJAStream.hpp"
|
||||
#elif defined(KOKKOS)
|
||||
#include "KOKKOSStream.hpp"
|
||||
#elif defined(ACC)
|
||||
#include "ACCStream.h"
|
||||
#elif defined(SYCL)
|
||||
#include "SYCLStream.h"
|
||||
#elif defined(OMP3)
|
||||
#include "OMP3Stream.h"
|
||||
#elif defined(OMP45)
|
||||
#include "OMP45Stream.h"
|
||||
#endif
|
||||
|
||||
// Default size of 2^25
|
||||
unsigned int ARRAY_SIZE = 33554432;
|
||||
unsigned int num_times = 100;
|
||||
unsigned int deviceIndex = 0;
|
||||
bool use_float = false;
|
||||
|
||||
|
||||
template <typename T>
|
||||
void check_solution(const unsigned int ntimes, std::vector<T>& a, std::vector<T>& b, std::vector<T>& c);
|
||||
|
||||
template <typename T>
|
||||
void run();
|
||||
|
||||
void parseArguments(int argc, char *argv[]);
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
std::cout
|
||||
<< "GPU-STREAM" << std::endl
|
||||
<< "Version: " << VERSION_STRING << std::endl
|
||||
<< "Implementation: " << IMPLEMENTATION_STRING << std::endl;
|
||||
|
||||
parseArguments(argc, argv);
|
||||
|
||||
// TODO: Fix SYCL to allow multiple template specializations
|
||||
#ifndef SYCL
|
||||
#ifndef KOKKOS
|
||||
if (use_float)
|
||||
run<float>();
|
||||
else
|
||||
#endif
|
||||
#endif
|
||||
run<double>();
|
||||
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void run()
|
||||
{
|
||||
std::cout << "Running kernels " << num_times << " times" << std::endl;
|
||||
|
||||
if (sizeof(T) == sizeof(float))
|
||||
std::cout << "Precision: float" << std::endl;
|
||||
else
|
||||
std::cout << "Precision: double" << std::endl;
|
||||
|
||||
// Create host vectors
|
||||
std::vector<T> a(ARRAY_SIZE, 0.1);
|
||||
std::vector<T> b(ARRAY_SIZE, 0.2);
|
||||
std::vector<T> c(ARRAY_SIZE, 0.0);
|
||||
std::streamsize ss = std::cout.precision();
|
||||
std::cout << std::setprecision(1) << std::fixed
|
||||
<< "Array size: " << ARRAY_SIZE*sizeof(T)*1.0E-6 << " MB"
|
||||
<< " (=" << ARRAY_SIZE*sizeof(T)*1.0E-9 << " GB)" << std::endl;
|
||||
std::cout << "Total size: " << 3.0*ARRAY_SIZE*sizeof(T)*1.0E-6 << " MB"
|
||||
<< " (=" << 3.0*ARRAY_SIZE*sizeof(T)*1.0E-9 << " GB)" << std::endl;
|
||||
std::cout.precision(ss);
|
||||
|
||||
Stream<T> *stream;
|
||||
|
||||
#if defined(CUDA)
|
||||
// Use the CUDA implementation
|
||||
stream = new CUDAStream<T>(ARRAY_SIZE, deviceIndex);
|
||||
|
||||
#elif defined(OCL)
|
||||
// Use the OpenCL implementation
|
||||
stream = new OCLStream<T>(ARRAY_SIZE, deviceIndex);
|
||||
|
||||
#elif defined(USE_RAJA)
|
||||
// Use the RAJA implementation
|
||||
stream = new RAJAStream<T>(ARRAY_SIZE, deviceIndex);
|
||||
|
||||
#elif defined(KOKKOS)
|
||||
// Use the Kokkos implementation
|
||||
stream = new KOKKOSStream<T>(ARRAY_SIZE, deviceIndex);
|
||||
|
||||
#elif defined(ACC)
|
||||
// Use the OpenACC implementation
|
||||
stream = new ACCStream<T>(ARRAY_SIZE, a.data(), b.data(), c.data(), deviceIndex);
|
||||
|
||||
#elif defined(SYCL)
|
||||
// Use the SYCL implementation
|
||||
stream = new SYCLStream<T>(ARRAY_SIZE, deviceIndex);
|
||||
|
||||
#elif defined(OMP3)
|
||||
// Use the "reference" OpenMP 3 implementation
|
||||
stream = new OMP3Stream<T>(ARRAY_SIZE, a.data(), b.data(), c.data());
|
||||
|
||||
#elif defined(OMP45)
|
||||
// Use the "reference" OpenMP 3 implementation
|
||||
stream = new OMP45Stream<T>(ARRAY_SIZE, a.data(), b.data(), c.data(), deviceIndex);
|
||||
|
||||
#endif
|
||||
|
||||
stream->write_arrays(a, b, c);
|
||||
|
||||
// List of times
|
||||
std::vector<std::vector<double>> timings(4);
|
||||
|
||||
// Declare timers
|
||||
std::chrono::high_resolution_clock::time_point t1, t2;
|
||||
|
||||
// Main loop
|
||||
for (unsigned int k = 0; k < num_times; k++)
|
||||
{
|
||||
// Execute Copy
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
stream->copy();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
timings[0].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
// Execute Mul
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
stream->mul();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
timings[1].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
// Execute Add
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
stream->add();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
timings[2].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
// Execute Triad
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
stream->triad();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
timings[3].push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
}
|
||||
|
||||
// Check solutions
|
||||
stream->read_arrays(a, b, c);
|
||||
check_solution<T>(num_times, a, b, c);
|
||||
|
||||
// Display timing results
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << "Function"
|
||||
<< std::left << std::setw(12) << "MBytes/sec"
|
||||
<< std::left << std::setw(12) << "Min (sec)"
|
||||
<< std::left << std::setw(12) << "Max"
|
||||
<< std::left << std::setw(12) << "Average" << std::endl;
|
||||
|
||||
std::cout << std::fixed;
|
||||
|
||||
std::string labels[4] = {"Copy", "Mul", "Add", "Triad"};
|
||||
size_t sizes[4] = {
|
||||
2 * sizeof(T) * ARRAY_SIZE,
|
||||
2 * sizeof(T) * ARRAY_SIZE,
|
||||
3 * sizeof(T) * ARRAY_SIZE,
|
||||
3 * sizeof(T) * ARRAY_SIZE
|
||||
};
|
||||
|
||||
for (int i = 0; i < 4; i++)
|
||||
{
|
||||
// Get min/max; ignore the first result
|
||||
auto minmax = std::minmax_element(timings[i].begin()+1, timings[i].end());
|
||||
|
||||
// Calculate average; ignore the first result
|
||||
double average = std::accumulate(timings[i].begin()+1, timings[i].end(), 0.0) / (double)(num_times - 1);
|
||||
|
||||
// Display results
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << labels[i]
|
||||
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-6 * sizes[i] / (*minmax.first)
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << *minmax.first
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << *minmax.second
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << average
|
||||
<< std::endl;
|
||||
|
||||
}
|
||||
|
||||
delete stream;
|
||||
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void check_solution(const unsigned int ntimes, std::vector<T>& a, std::vector<T>& b, std::vector<T>& c)
|
||||
{
|
||||
// Generate correct solution
|
||||
T goldA = 0.1;
|
||||
T goldB = 0.2;
|
||||
T goldC = 0.0;
|
||||
|
||||
const T scalar = 0.3;
|
||||
|
||||
for (unsigned int i = 0; i < ntimes; i++)
|
||||
{
|
||||
// Do STREAM!
|
||||
goldC = goldA;
|
||||
goldB = scalar * goldC;
|
||||
goldC = goldA + goldB;
|
||||
goldA = goldB + scalar * goldC;
|
||||
}
|
||||
|
||||
// Calculate the average error
|
||||
double errA = std::accumulate(a.begin(), a.end(), 0.0, [&](double sum, const T val){ return sum + fabs(val - goldA); });
|
||||
errA /= a.size();
|
||||
double errB = std::accumulate(b.begin(), b.end(), 0.0, [&](double sum, const T val){ return sum + fabs(val - goldB); });
|
||||
errB /= b.size();
|
||||
double errC = std::accumulate(c.begin(), c.end(), 0.0, [&](double sum, const T val){ return sum + fabs(val - goldC); });
|
||||
errC /= c.size();
|
||||
|
||||
double epsi = std::numeric_limits<T>::epsilon() * 100.0;
|
||||
|
||||
if (errA > epsi)
|
||||
std::cerr
|
||||
<< "Validation failed on a[]. Average error " << errA
|
||||
<< std::endl;
|
||||
if (errB > epsi)
|
||||
std::cerr
|
||||
<< "Validation failed on b[]. Average error " << errB
|
||||
<< std::endl;
|
||||
if (errC > epsi)
|
||||
std::cerr
|
||||
<< "Validation failed on c[]. Average error " << errC
|
||||
<< std::endl;
|
||||
|
||||
}
|
||||
|
||||
int parseUInt(const char *str, unsigned int *output)
|
||||
{
|
||||
char *next;
|
||||
*output = strtoul(str, &next, 10);
|
||||
return !strlen(next);
|
||||
}
|
||||
|
||||
void parseArguments(int argc, char *argv[])
|
||||
{
|
||||
for (int i = 1; i < argc; i++)
|
||||
{
|
||||
if (!std::string("--list").compare(argv[i]))
|
||||
{
|
||||
listDevices();
|
||||
exit(EXIT_SUCCESS);
|
||||
}
|
||||
else if (!std::string("--device").compare(argv[i]))
|
||||
{
|
||||
if (++i >= argc || !parseUInt(argv[i], &deviceIndex))
|
||||
{
|
||||
std::cerr << "Invalid device index." << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
else if (!std::string("--arraysize").compare(argv[i]) ||
|
||||
!std::string("-s").compare(argv[i]))
|
||||
{
|
||||
if (++i >= argc || !parseUInt(argv[i], &ARRAY_SIZE))
|
||||
{
|
||||
std::cerr << "Invalid array size." << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
else if (!std::string("--numtimes").compare(argv[i]) ||
|
||||
!std::string("-n").compare(argv[i]))
|
||||
{
|
||||
if (++i >= argc || !parseUInt(argv[i], &num_times))
|
||||
{
|
||||
std::cerr << "Invalid number of times." << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
if (num_times < 2)
|
||||
{
|
||||
std::cerr << "Number of times must be 2 or more" << std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
else if (!std::string("--float").compare(argv[i]))
|
||||
{
|
||||
use_float = true;
|
||||
}
|
||||
else if (!std::string("--help").compare(argv[i]) ||
|
||||
!std::string("-h").compare(argv[i]))
|
||||
{
|
||||
std::cout << std::endl;
|
||||
std::cout << "Usage: " << argv[0] << " [OPTIONS]" << std::endl << std::endl;
|
||||
std::cout << "Options:" << std::endl;
|
||||
std::cout << " -h --help Print the message" << std::endl;
|
||||
std::cout << " --list List available devices" << std::endl;
|
||||
std::cout << " --device INDEX Select device at INDEX" << std::endl;
|
||||
std::cout << " -s --arraysize SIZE Use SIZE elements in the array" << std::endl;
|
||||
std::cout << " -n --numtimes NUM Run the test NUM times (NUM >= 2)" << std::endl;
|
||||
std::cout << " --float Use floats (rather than doubles)" << std::endl;
|
||||
std::cout << std::endl;
|
||||
exit(EXIT_SUCCESS);
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cerr << "Unrecognized argument '" << argv[i] << "' (try '--help')"
|
||||
<< std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1,70 +0,0 @@
|
||||
/*=============================================================================
|
||||
*------------------------------------------------------------------------------
|
||||
* Copyright 2015: Tom Deakin, Simon McIntosh-Smith, University of Bristol HPC
|
||||
* Based on John D. McCalpin’s original STREAM benchmark for CPUs
|
||||
*------------------------------------------------------------------------------
|
||||
* License:
|
||||
* 1. You are free to use this program and/or to redistribute
|
||||
* this program.
|
||||
* 2. You are free to modify this program for your own use,
|
||||
* including commercial use, subject to the publication
|
||||
* restrictions in item 3.
|
||||
* 3. You are free to publish results obtained from running this
|
||||
* program, or from works that you derive from this program,
|
||||
* with the following limitations:
|
||||
* 3a. In order to be referred to as "GPU-STREAM benchmark results",
|
||||
* published results must be in conformance to the GPU-STREAM
|
||||
* Run Rules published at
|
||||
* http://github.com/UoB-HPC/GPU-STREAM/wiki/Run-Rules
|
||||
* and incorporated herein by reference.
|
||||
* The copyright holders retain the
|
||||
* right to determine conformity with the Run Rules.
|
||||
* 3b. Results based on modified source code or on runs not in
|
||||
* accordance with the GPU-STREAM Run Rules must be clearly
|
||||
* labelled whenever they are published. Examples of
|
||||
* proper labelling include:
|
||||
* "tuned GPU-STREAM benchmark results"
|
||||
* "based on a variant of the GPU-STREAM benchmark code"
|
||||
* Other comparable, clear and reasonable labelling is
|
||||
* acceptable.
|
||||
* 3c. Submission of results to the GPU-STREAM benchmark web site
|
||||
* is encouraged, but not required.
|
||||
* 4. Use of this program or creation of derived works based on this
|
||||
* program constitutes acceptance of these licensing restrictions.
|
||||
* 5. Absolutely no warranty is expressed or implied.
|
||||
*———————————————————————————————————-----------------------------------------*/
|
||||
|
||||
|
||||
#ifdef FLOAT
|
||||
#define DATATYPE float
|
||||
constant DATATYPE scalar = 3.0f;
|
||||
#else
|
||||
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
|
||||
#define DATATYPE double
|
||||
constant DATATYPE scalar = 3.0;
|
||||
#endif
|
||||
|
||||
|
||||
kernel void copy(global const DATATYPE * restrict a, global DATATYPE * restrict c)
|
||||
{
|
||||
const size_t i = get_global_id(0);
|
||||
c[i] = a[i];
|
||||
}
|
||||
|
||||
kernel void mul(global DATATYPE * restrict b, global const DATATYPE * restrict c)
|
||||
{
|
||||
const size_t i = get_global_id(0);
|
||||
b[i] = scalar * c[i];
|
||||
}
|
||||
|
||||
kernel void add(global const DATATYPE * restrict a, global const DATATYPE * restrict b, global DATATYPE * restrict c)
|
||||
{
|
||||
const size_t i = get_global_id(0);
|
||||
c[i] = a[i] + b[i];
|
||||
}
|
||||
|
||||
kernel void triad(global DATATYPE * restrict a, global const DATATYPE * restrict b, global const DATATYPE * restrict c)
|
||||
{
|
||||
const size_t i = get_global_id(0);
|
||||
a[i] = b[i] + scalar * c[i];
|
||||
}
|
||||
488
ocl-stream.cpp
488
ocl-stream.cpp
@ -1,488 +0,0 @@
|
||||
/*=============================================================================
|
||||
*------------------------------------------------------------------------------
|
||||
* Copyright 2015: Tom Deakin, Simon McIntosh-Smith, University of Bristol HPC
|
||||
* Based on John D. McCalpin’s original STREAM benchmark for CPUs
|
||||
*------------------------------------------------------------------------------
|
||||
* License:
|
||||
* 1. You are free to use this program and/or to redistribute
|
||||
* this program.
|
||||
* 2. You are free to modify this program for your own use,
|
||||
* including commercial use, subject to the publication
|
||||
* restrictions in item 3.
|
||||
* 3. You are free to publish results obtained from running this
|
||||
* program, or from works that you derive from this program,
|
||||
* with the following limitations:
|
||||
* 3a. In order to be referred to as "GPU-STREAM benchmark results",
|
||||
* published results must be in conformance to the GPU-STREAM
|
||||
* Run Rules published at
|
||||
* http://github.com/UoB-HPC/GPU-STREAM/wiki/Run-Rules
|
||||
* and incorporated herein by reference.
|
||||
* The copyright holders retain the
|
||||
* right to determine conformity with the Run Rules.
|
||||
* 3b. Results based on modified source code or on runs not in
|
||||
* accordance with the GPU-STREAM Run Rules must be clearly
|
||||
* labelled whenever they are published. Examples of
|
||||
* proper labelling include:
|
||||
* "tuned GPU-STREAM benchmark results"
|
||||
* "based on a variant of the GPU-STREAM benchmark code"
|
||||
* Other comparable, clear and reasonable labelling is
|
||||
* acceptable.
|
||||
* 3c. Submission of results to the GPU-STREAM benchmark web site
|
||||
* is encouraged, but not required.
|
||||
* 4. Use of this program or creation of derived works based on this
|
||||
* program constitutes acceptance of these licensing restrictions.
|
||||
* 5. Absolutely no warranty is expressed or implied.
|
||||
*———————————————————————————————————-----------------------------------------*/
|
||||
|
||||
|
||||
#include <iostream>
|
||||
#include <fstream>
|
||||
#include <vector>
|
||||
#include <chrono>
|
||||
#include <cfloat>
|
||||
#include <cmath>
|
||||
|
||||
#define CL_HPP_ENABLE_EXCEPTIONS
|
||||
#define CL_HPP_MINIMUM_OPENCL_VERSION 110
|
||||
#define CL_HPP_TARGET_OPENCL_VERSION 110
|
||||
#include "CL/cl2.hpp"
|
||||
#include "common.h"
|
||||
|
||||
std::string getDeviceName(const cl::Device& device);
|
||||
std::string getDeviceDriver(const cl::Device& device);
|
||||
unsigned getDeviceList(std::vector<cl::Device>& devices);
|
||||
|
||||
|
||||
// Print error and exit
|
||||
void die(std::string msg, cl::Error& e)
|
||||
{
|
||||
std::cerr
|
||||
<< "Error: "
|
||||
<< msg
|
||||
<< ": " << e.what()
|
||||
<< "(" << e.err() << ")"
|
||||
<< std::endl;
|
||||
exit(e.err());
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
|
||||
// Print out run information
|
||||
std::cout
|
||||
<< "GPU-STREAM" << std::endl
|
||||
<< "Version: " << VERSION_STRING << std::endl
|
||||
<< "Implementation: OpenCL" << std::endl;
|
||||
|
||||
std::string status;
|
||||
|
||||
try
|
||||
{
|
||||
parseArguments(argc, argv);
|
||||
if (NTIMES < 2)
|
||||
throw std::runtime_error("Chosen number of times is invalid, must be >= 2");
|
||||
|
||||
|
||||
std::cout << "Precision: ";
|
||||
if (useFloat) std::cout << "float";
|
||||
else std::cout << "double";
|
||||
std::cout << std::endl << std::endl;
|
||||
|
||||
std::cout << "Running kernels " << NTIMES << " times" << std::endl;
|
||||
|
||||
if (ARRAY_SIZE % 1024 != 0)
|
||||
{
|
||||
unsigned int OLD_ARRAY_SIZE = ARRAY_SIZE;
|
||||
ARRAY_SIZE -= ARRAY_SIZE % 1024;
|
||||
std::cout
|
||||
<< "Warning: array size must divide 1024" << std::endl
|
||||
<< "Resizing array from " << OLD_ARRAY_SIZE
|
||||
<< " to " << ARRAY_SIZE << std::endl;
|
||||
if (ARRAY_SIZE == 0)
|
||||
throw std::runtime_error("Array size must be >= 1024");
|
||||
}
|
||||
|
||||
// Get precision (used to reset later)
|
||||
std::streamsize ss = std::cout.precision();
|
||||
|
||||
size_t DATATYPE_SIZE;
|
||||
|
||||
if (useFloat)
|
||||
{
|
||||
DATATYPE_SIZE = sizeof(float);
|
||||
}
|
||||
else
|
||||
{
|
||||
DATATYPE_SIZE = sizeof(double);
|
||||
}
|
||||
|
||||
// Display number of bytes in array
|
||||
std::cout << std::setprecision(1) << std::fixed
|
||||
<< "Array size: " << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
||||
<< " (=" << ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
||||
<< std::endl;
|
||||
std::cout << "Total size: " << 3.0*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0 << " MB"
|
||||
<< " (=" << 3.0*ARRAY_SIZE*DATATYPE_SIZE/1024.0/1024.0/1024.0 << " GB)"
|
||||
<< std::endl;
|
||||
|
||||
// Reset precision
|
||||
std::cout.precision(ss);
|
||||
|
||||
// Open the Kernel source
|
||||
std::string kernels;
|
||||
{
|
||||
std::ifstream in("ocl-stream-kernels.cl");
|
||||
if (!in.is_open())
|
||||
throw std::runtime_error("Cannot open kernel file");
|
||||
kernels = std::string (std::istreambuf_iterator<char>(in), (std::istreambuf_iterator<char>()));
|
||||
}
|
||||
|
||||
|
||||
// Setup OpenCL
|
||||
|
||||
// Get list of devices
|
||||
std::vector<cl::Device> devices;
|
||||
getDeviceList(devices);
|
||||
|
||||
// Check device index is in range
|
||||
if (deviceIndex >= devices.size())
|
||||
throw std::runtime_error("Chosen device index is invalid");
|
||||
|
||||
cl::Device device = devices[deviceIndex];
|
||||
|
||||
status = "Creating context";
|
||||
cl::Context context(device);
|
||||
|
||||
status = "Creating queue";
|
||||
cl::CommandQueue queue(context);
|
||||
|
||||
status = "Creating program";
|
||||
cl::Program program(context, kernels);
|
||||
|
||||
// Print out device name
|
||||
std::string name = getDeviceName(device);
|
||||
std::cout << "Using OpenCL device " << name << std::endl;
|
||||
|
||||
// Print out OpenCL driver version for this device
|
||||
std::string driver = getDeviceDriver(device);
|
||||
std::cout << "Driver: " << driver << std::endl;
|
||||
|
||||
// Check device can do double precision if requested
|
||||
if (!useFloat && !device.getInfo<CL_DEVICE_DOUBLE_FP_CONFIG>())
|
||||
throw std::runtime_error("Device does not support double precision, please use --float");
|
||||
|
||||
// Check buffers fit on the device
|
||||
status = "Getting device memory sizes";
|
||||
cl_ulong totalmem = device.getInfo<CL_DEVICE_GLOBAL_MEM_SIZE>();
|
||||
cl_ulong maxbuffer = device.getInfo<CL_DEVICE_MAX_MEM_ALLOC_SIZE>();
|
||||
if (maxbuffer < DATATYPE_SIZE*ARRAY_SIZE)
|
||||
throw std::runtime_error("Device cannot allocate a buffer big enough");
|
||||
if (totalmem < 3*DATATYPE_SIZE*ARRAY_SIZE)
|
||||
throw std::runtime_error("Device does not have enough memory for all 3 buffers");
|
||||
|
||||
try
|
||||
{
|
||||
std::string options = "";
|
||||
if (useFloat)
|
||||
options = "-DFLOAT";
|
||||
program.build(options.c_str());
|
||||
}
|
||||
catch (cl::Error& e)
|
||||
{
|
||||
std::vector<cl::Device> devices = context.getInfo<CL_CONTEXT_DEVICES>();
|
||||
std::string buildlog = program.getBuildInfo<CL_PROGRAM_BUILD_LOG>(devices[0]);
|
||||
std::cerr
|
||||
<< "Build error:"
|
||||
<< buildlog
|
||||
<< std::endl;
|
||||
throw e;
|
||||
}
|
||||
|
||||
status = "Making kernel copy";
|
||||
auto copy = cl::KernelFunctor<cl::Buffer&, cl::Buffer&>(program, "copy");
|
||||
status = "Making kernel mul";
|
||||
auto mul = cl::KernelFunctor<cl::Buffer&, cl::Buffer&>(program, "mul");
|
||||
status = "Making kernel add";
|
||||
auto add = cl::KernelFunctor<cl::Buffer&, cl::Buffer&, cl::Buffer&>(program, "add");
|
||||
status = "Making kernel triad";
|
||||
auto triad = cl::KernelFunctor<cl::Buffer&, cl::Buffer&, cl::Buffer&>(program, "triad");
|
||||
|
||||
// Create host vectors
|
||||
void *h_a = malloc(ARRAY_SIZE * DATATYPE_SIZE);
|
||||
void *h_b = malloc(ARRAY_SIZE * DATATYPE_SIZE);
|
||||
void *h_c = malloc(ARRAY_SIZE * DATATYPE_SIZE);
|
||||
|
||||
// Initilise arrays
|
||||
for (unsigned int i = 0; i < ARRAY_SIZE; i++)
|
||||
{
|
||||
if (useFloat)
|
||||
{
|
||||
((float*)h_a)[i] = 1.0f;
|
||||
((float*)h_b)[i] = 2.0f;
|
||||
((float*)h_c)[i] = 0.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
((double*)h_a)[i] = 1.0;
|
||||
((double*)h_b)[i] = 2.0;
|
||||
((double*)h_c)[i] = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// Create device buffers
|
||||
status = "Creating buffers";
|
||||
cl::Buffer d_a(context, CL_MEM_READ_WRITE, DATATYPE_SIZE * ARRAY_SIZE);
|
||||
cl::Buffer d_b(context, CL_MEM_READ_WRITE, DATATYPE_SIZE * ARRAY_SIZE);
|
||||
cl::Buffer d_c(context, CL_MEM_READ_WRITE, DATATYPE_SIZE * ARRAY_SIZE);
|
||||
|
||||
|
||||
// Copy host memory to device
|
||||
status = "Copying buffers";
|
||||
queue.enqueueWriteBuffer(d_a, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_a);
|
||||
queue.enqueueWriteBuffer(d_b, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_b);
|
||||
queue.enqueueWriteBuffer(d_c, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_c);
|
||||
|
||||
// Make sure the copies are finished
|
||||
queue.finish();
|
||||
|
||||
|
||||
// List of times
|
||||
std::vector< std::vector<double> > timings;
|
||||
|
||||
// Declare timers
|
||||
std::chrono::high_resolution_clock::time_point t1, t2;
|
||||
|
||||
// Main loop
|
||||
for (unsigned int k = 0; k < NTIMES; k++)
|
||||
{
|
||||
status = "Executing copy";
|
||||
std::vector<double> times;
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
copy(
|
||||
cl::EnqueueArgs(
|
||||
queue,
|
||||
cl::NDRange(ARRAY_SIZE)),
|
||||
d_a, d_c);
|
||||
queue.finish();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
status = "Executing mul";
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
mul(
|
||||
cl::EnqueueArgs(
|
||||
queue,
|
||||
cl::NDRange(ARRAY_SIZE)),
|
||||
d_b, d_c);
|
||||
queue.finish();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
status = "Executing add";
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
add(
|
||||
cl::EnqueueArgs(
|
||||
queue,
|
||||
cl::NDRange(ARRAY_SIZE)),
|
||||
d_a, d_b, d_c);
|
||||
queue.finish();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
|
||||
status = "Executing triad";
|
||||
t1 = std::chrono::high_resolution_clock::now();
|
||||
triad(
|
||||
cl::EnqueueArgs(
|
||||
queue,
|
||||
cl::NDRange(ARRAY_SIZE)),
|
||||
d_a, d_b, d_c);
|
||||
queue.finish();
|
||||
t2 = std::chrono::high_resolution_clock::now();
|
||||
times.push_back(std::chrono::duration_cast<std::chrono::duration<double> >(t2 - t1).count());
|
||||
|
||||
timings.push_back(times);
|
||||
|
||||
}
|
||||
|
||||
// Check solutions
|
||||
status = "Copying back buffers";
|
||||
queue.enqueueReadBuffer(d_a, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_a);
|
||||
queue.enqueueReadBuffer(d_b, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_b);
|
||||
queue.enqueueReadBuffer(d_c, CL_FALSE, 0, ARRAY_SIZE*DATATYPE_SIZE, h_c);
|
||||
queue.finish();
|
||||
|
||||
|
||||
if (useFloat)
|
||||
{
|
||||
check_solution<float>(h_a, h_b, h_c);
|
||||
}
|
||||
else
|
||||
{
|
||||
check_solution<double>(h_a, h_b, h_c);
|
||||
}
|
||||
|
||||
// Crunch results
|
||||
size_t sizes[4] = {
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
2 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE,
|
||||
3 * DATATYPE_SIZE * ARRAY_SIZE
|
||||
};
|
||||
double min[4] = {DBL_MAX, DBL_MAX, DBL_MAX, DBL_MAX};
|
||||
double max[4] = {0.0, 0.0, 0.0, 0.0};
|
||||
double avg[4] = {0.0, 0.0, 0.0, 0.0};
|
||||
// Ignore first result
|
||||
for (unsigned int i = 1; i < NTIMES; i++)
|
||||
{
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
avg[j] += timings[i][j];
|
||||
min[j] = std::min(min[j], timings[i][j]);
|
||||
max[j] = std::max(max[j], timings[i][j]);
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < 4; j++)
|
||||
avg[j] /= (double)(NTIMES-1);
|
||||
|
||||
// Display results
|
||||
std::string labels[] = {"Copy", "Mul", "Add", "Triad"};
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << "Function"
|
||||
<< std::left << std::setw(12) << "MBytes/sec"
|
||||
<< std::left << std::setw(12) << "Min (sec)"
|
||||
<< std::left << std::setw(12) << "Max"
|
||||
<< std::left << std::setw(12) << "Average"
|
||||
<< std::endl;
|
||||
for (int j = 0; j < 4; j++)
|
||||
{
|
||||
std::cout
|
||||
<< std::left << std::setw(12) << labels[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(3) << 1.0E-06 * sizes[j]/min[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << min[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << max[j]
|
||||
<< std::left << std::setw(12) << std::setprecision(5) << avg[j]
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
// Free host vectors
|
||||
free(h_a);
|
||||
free(h_b);
|
||||
free(h_c);
|
||||
|
||||
}
|
||||
catch (cl::Error &e)
|
||||
{
|
||||
die(status, e);
|
||||
}
|
||||
catch (std::exception& e)
|
||||
{
|
||||
std::cerr
|
||||
<< "Error: "
|
||||
<< e.what()
|
||||
<< std::endl;
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
unsigned getDeviceList(std::vector<cl::Device>& devices)
|
||||
{
|
||||
// Get list of platforms
|
||||
std::vector<cl::Platform> platforms;
|
||||
try
|
||||
{
|
||||
cl::Platform::get(&platforms);
|
||||
}
|
||||
catch (cl::Error &e)
|
||||
{
|
||||
die("Getting platforms", e);
|
||||
}
|
||||
|
||||
// Enumerate devices
|
||||
for (unsigned int i = 0; i < platforms.size(); i++)
|
||||
{
|
||||
std::vector<cl::Device> plat_devices;
|
||||
try
|
||||
{
|
||||
platforms[i].getDevices(CL_DEVICE_TYPE_ALL, &plat_devices);
|
||||
}
|
||||
catch (cl::Error &e)
|
||||
{
|
||||
die("Getting devices", e);
|
||||
}
|
||||
devices.insert(devices.end(), plat_devices.begin(), plat_devices.end());
|
||||
}
|
||||
|
||||
return devices.size();
|
||||
}
|
||||
|
||||
|
||||
std::string getDeviceName(const cl::Device& device)
|
||||
{
|
||||
std::string name;
|
||||
cl_device_info info = CL_DEVICE_NAME;
|
||||
|
||||
try
|
||||
{
|
||||
|
||||
// Special case for AMD
|
||||
#ifdef CL_DEVICE_BOARD_NAME_AMD
|
||||
device.getInfo(CL_DEVICE_VENDOR, &name);
|
||||
if (strstr(name.c_str(), "Advanced Micro Devices"))
|
||||
info = CL_DEVICE_BOARD_NAME_AMD;
|
||||
#endif
|
||||
|
||||
device.getInfo(info, &name);
|
||||
}
|
||||
catch (cl::Error &e)
|
||||
{
|
||||
die("Getting device name", e);
|
||||
}
|
||||
|
||||
return name;
|
||||
}
|
||||
|
||||
std::string getDeviceDriver(const cl::Device& device)
|
||||
{
|
||||
std::string driver;
|
||||
try
|
||||
{
|
||||
device.getInfo(CL_DRIVER_VERSION, &driver);
|
||||
}
|
||||
catch (cl::Error &e)
|
||||
{
|
||||
die("Getting device driver", e);
|
||||
}
|
||||
|
||||
return driver;
|
||||
}
|
||||
|
||||
|
||||
void listDevices(void)
|
||||
{
|
||||
// Get list of devices
|
||||
std::vector<cl::Device> devices;
|
||||
getDeviceList(devices);
|
||||
|
||||
// Print device names
|
||||
if (devices.size() == 0)
|
||||
{
|
||||
std::cout << "No devices found." << std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
std::cout << std::endl;
|
||||
std::cout << "Devices:" << std::endl;
|
||||
for (unsigned i = 0; i < devices.size(); i++)
|
||||
{
|
||||
std::cout << i << ": " << getDeviceName(devices[i]) << std::endl;
|
||||
}
|
||||
std::cout << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,4 +0,0 @@
|
||||
./gpu-stream-cuda
|
||||
./gpu-stream-cuda --groups 64 --groupSize 256
|
||||
./gpu-stream-cuda --float
|
||||
./gpu-stream-cuda --float --groups 64 --groupSize 256
|
||||
Loading…
Reference in New Issue
Block a user